题意

给定两个\(P,Q\)的正整数区间(\(P,Q\)都符合\([L,R]\)这个区间,并且都\(\le 10^9\)),分别从其中随机选出一个数,选出的两个数作为一个新区间的左右端点。要求新区间内的幸运数刚好为\(k\)个的概率(幸运数指一个数的数位只有4或7)。

分析

这题要思考着做。首先能有一个直觉:在\(10^9\)中间的幸运数肯定不多(2^10左右)。这个可以暴力求出。然后概率如何求?所有的情况一定是\((P_r-P_l+1)(Q_r-Q_l+1)\)这么多,然后符合条件的幸运数区间一共有\(l_tot-k+1\)个(\([Lucky_{i},Lucky_{i+k-1}]\))这么多。为了计算所有情况,我们只能遍历所有幸运数区间,看在什么情况下能符合题意(显然不会去遍历\(10^9\)的P、Q的区间)。对于每个这样的\([Lucky_{i},Lucky_{i+k-1}]\)区间,能够与他们相交的P、Q是存在两种情况的:a)P<Q;b) P>Q。我们分类讨论即可。简单地说,先计算Lucky区间与\([P_l,P_r]\)的交集(相当于在a情况下考虑区间头),然后再计算Lucky区间与\([Q_l,Q_r]\)的交集,将两个结果相乘即是符合第i个幸运区间的可能情况。同样地,还要对反向地(即PQ交换)再计算一遍。注意对\(k=1\)情况的特判。

遍历所有的幸运区间后,概率就不难求得了。

代码(Java)

/*
* ACM Code => cf110d.java
* Written by Sam X
* Date: 三月, 08, 2019
* Time: 14:27
*/
import java.util.*;
import java.math.*; public class cf110d
{
static ArrayList<Long> vec = new ArrayList<>();
static void dfs(long x)
{
if(x>1e9) return;
if(x*10+4<1e9)
{
vec.add(x*10+4);
dfs(x*10+4);
}
if(x*10+7<1e9)
{
vec.add(x*10+7);
dfs(x*10+7);
}
}
static final long contain(long x1, long y1, long x2, long y2)
{
return Math.max(Math.min(y1,y2)-Math.max(x1,x2)+1,0l);
}
public static void main(String args[])
{
Scanner cin = new Scanner(System.in);
long pl = cin.nextLong(),
pr = cin.nextLong(),
vl = cin.nextLong(),
vr = cin.nextLong(),
k = cin.nextLong(); dfs(0);
vec.add(0l);
vec.add((long)1e9); Collections.sort(vec);
/*
for(long x: vec)
{
System.out.print(x+" ");
}
System.out.println();
*/
long ans=0; int sz=vec.size()-2;
for(int i=1; i<=sz-k+1; ++i)
{
int j=i+(int)k-1;
ans+=contain(vec.get(i-1)+1, vec.get(i), pl, pr)*contain(vec.get(j), vec.get(j+1)-1, vl, vr);
if(vec.get(i)>pr) break;
} for(int i=1; i<=sz-k+1; ++i)
{
int j=i+(int)k-1;
ans+=contain(vec.get(i-1)+1, vec.get(i), vl, vr)*contain(vec.get(j), vec.get(j+1)-1, pl, pr);
if(vec.get(i)>vr) break;
} if(k==1)
{
for(int i=1; i<=sz; ++i)
{
if(contain(vec.get(i), vec.get(i), pl, pr)!=0 &&
contain(vec.get(i), vec.get(i), vl, vr)!=0) ans--;
}
} System.out.printf("%.12f\n", (double)ans/(vr-vl+1)/(pr-pl+1));
cin.close();
}
}

【赛后补题】Lucky Probability(CodeForces 110D)的更多相关文章

  1. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  2. 2018 HDU多校第三场赛后补题

    2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...

  3. 【cf补题记录】Codeforces Round #608 (Div. 2)

    比赛传送门 再次改下写博客的格式,以锻炼自己码字能力 A. Suits 题意:有四种材料,第一套西装需要 \(a\).\(d\) 各一件,卖 \(e\) 块:第二套西装需要 \(b\).\(c\).\ ...

  4. 【cf补题记录】Codeforces Round #607 (Div. 2)

    比赛传送门 这里推荐一位dalao的博客-- https://www.cnblogs.com/KisekiPurin2019/ A:字符串 B:贪心 A // https://codeforces.c ...

  5. 「赛后补题」HBCPC2018题目代码与思路简析

    这次比赛(2018年第二届河北省大学生程序设计竞赛)虽然没有打,但是题目还是要写的.未完成的题目(还差比较硬核的四题)和思路分析会陆续更新完. Problem A 2011 Mex Query /* ...

  6. 【赛后补题】(HDU6223) Infinite Fraction Path {2017-ACM/ICPC Shenyang Onsite}

    场上第二条卡我队的题目. 题意与分析 按照题意能够生成一个有环的n个点图(每个点有个位数的权值).图上路过n个点显然能够生成一个n位数的序列.求一个最大序列. 这条题目显然是搜索,但是我队在场上(我负 ...

  7. 【赛后补题】(HDU6228) Tree {2017-ACM/ICPC Shenyang Onsite}

    这条题目当时卡了我们半天,于是成功打铁--今天回来一看,mmp,贪心思想怎么这么弱智.....(怪不得场上那么多人A了 题意分析 这里是原题: Tree Time Limit: 2000/1000 M ...

  8. HDU 6446 Tree and Permutation(赛后补题)

    >>传送门<< 分析:这个题是结束之后和老师他们讨论出来的,很神奇:刚写的时候一直没有注意到这个是一个树这个条件:和老师讨论出来的思路是,任意两个结点出现的次数是(n-1)!, ...

  9. HZNU第十二届校赛赛后补题

    愉快的校赛翻皮水! 题解 A 温暖的签到,注意用gets #include <map> #include <set> #include <ctime> #inclu ...

随机推荐

  1. Zabbix日常监控(触发器表达式、远程执行命令、宏简等)简单记录

    主机的工作基本流程 Host group --> Host --> Application --> Item --> Trigger(OK-->PROBLEM,trigg ...

  2. wrap装饰器包

    import wrapt # without argument in decorator @wrapt.decorator def logging(wrapped, instance, args, k ...

  3. lambda表达式和groovy闭包的区别

    groovy定义的闭包是 Closure 的实例,lambda表达式只是在特定的接⼝或者抽象类的匿名实现,他们之间最主要区别闭包可以灵活的配置代理策略⽽labmda表达式不允许

  4. JavaScript计算指定日期与当前日期的相差天数

    java中处理2个时间段相差几天很容易,直接调相关方法就行,不过js处理这类问题稍微有点不易,项目开发中也用到了,如下: 1 2 3 4 5 6 7 8 9 10 11 12 //计算两个日期天数差的 ...

  5. UVa 10213 - How Many Pieces of Land ?(欧拉公式)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 20145203盖泽双:Java实验报告二

    Java实验报告二:Java面向对象程序设计 实验要求: 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验内容 ...

  7. virtualbox+vagrant学习-2(command cli)-7-vagrant login命令

    Login ⚠️该命令已经弃用了,别名为vagrant cloud auth login.看本博客的 格式: vagrant cloud auth login [options] 登录命令用于使用Ha ...

  8. 造成MySQL全表扫描的原因

    全表扫描是数据库搜寻表的每一条记录的过程,直到所有符合给定条件的记录返回为止.通常在数据库中,对无索引的表进行查询一般称为全表扫描:然而有时候我们即便添加了索引,但当我们的SQL语句写的不合理的时候也 ...

  9. Spring源码分析(二十四)初始化非延迟加载单例

    摘要: 本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 完成BeanFactory的初始化工作,其中包括ConversionS ...

  10. Spring源码分析(八)AbstractBeanDefinition属性

    摘要:本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 在上一篇中已经完成了XML文档到GenericBeanDefiniton ...