【BZOJ3309】DZY Loves Math

Description

对于正整数\(n\),定义\(f(n)\)为\(n\)所含质因子的最大幂指数。例如\(f(1960)=f(2^3×5^1×7^2)=3\),\(f(10007)=1\),\(f(1)=0\)。

给定正整数\(a,b\),求\(\sum\limits_{a_i=1}\sum\limits_{b_j=1}f(\gcd(i,j))\)。

Input

第一行一个数\(T\),表示询问数。

接下来\(T\)行,每行两个数\(a,b\),表示一个询问。

Output

对于每一个询问,输出一行一个非负整数作为回答。

HINT

\(T≤10000\)

\(1≤a,b≤10^7\)


推式子可以得到

\[\sum_{T=1}^{\min(a,b)}\lfloor\frac{a}{T}\rfloor\lfloor\frac{b}{T}\rfloor\sum_{d|T}f(d)\mu(\frac{T}{d})
\]

设\(g(T)=\sum_{d|T}f(d)\mu(\frac{T}{d})\),想一下卷积发现没啥用,然后我就放弃了。

浪费了一次打表的大好机会...打表可以发现\(g\)只有\(01\)两种值,但是没什么显然的性质,于是我们可以暴力按意义分类讨论取\(0\)或者\(1\)

然后我们讨论一下,设\(p\)代表质数

  • \(g(p)=1\)

  • 然后在计算式中令\(\frac{T}{d}\)的幂全为\(0\)或\(1\),这样\(\mu\)才能产生贡献。

    这样的话可以发现\(f(d)\)只有两种取值\(f(T)\)与\(f(T-1)\),暴力讨论这两种取值。

    可以得到式子\(g(T)=-\sum_{d|x\&\&f(d)\not=f(x)}\mu(\frac{x}{d})\)

    然后继续讨论可能取的\(01\)情况,发现如果幂全相等,可以取\((-1)^{k+1}\),\(k\)为约数个数

    否则就取\(0\)

    线筛的时候维护一下最小质因子的幂数和最小质因子的幂


Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=1e7;
using std::min;
int pri[N+10],ispri[N+10],a[N+10],b[N+10],cnt;
ll f[N+10],ans,n,m;
void init()
{
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
b[i]=pri[++cnt]=i;
f[i]=a[i]=1;
}
for(int j=1;j<=cnt&&i*pri[j]<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0)
{
a[i*pri[j]]=a[i]+1;
b[i*pri[j]]=b[i]*pri[j];
if(i==b[i]) f[i*pri[j]]=1;
else f[i*pri[j]]=a[i/b[i]]==a[i]+1?-f[i/b[i]]:0;
break;
}
else
{
a[i*pri[j]]=1,b[i*pri[j]]=pri[j];
f[i*pri[j]]=a[i]==1?-f[i]:0;
}
}
}
for(int i=1;i<=N;i++) f[i]+=f[i-1];
}
int main()
{
init();int T;scanf("%d",&T);
while(T--)
{
ans=0;
scanf("%lld%lld",&n,&m);
for(ll l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),(m/(m/l)));
ans+=(n/l)*(m/l)*(f[r]-f[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}

2018.12.15

【BZOJ3309】DZY Loves Math 解题报告的更多相关文章

  1. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  2. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  3. bzoj2154||洛谷P1829 Crash的数字表格&&JZPTAB && bzoj3309 DZY Loves Math

    bzoj2154||洛谷P1829 https://www.lydsy.com/JudgeOnline/problem.php?id=2154 https://www.luogu.org/proble ...

  4. BZOJ3309 : DZY Loves Math

    莫比乌斯反演得 $ans=\sum g[i]\frac{a}{i}\frac{b}{i}$ 其中$g[i]=\sum_{j|i}f[j]\mu(\frac{i}{j})$ 由f和miu的性质可得 设$ ...

  5. CodeForces - 445A - DZY Loves Chessboard解题报告

    对于这题本人刚开始的时候觉得应该用DFS来解决实现这个问题,但由于本人对于DFS并不是太熟,所以就放弃了这个想法: 但又想了想要按照这个要求实现问题则必须是黑白相间,然后把是字符是'B'或'W'改为' ...

  6. 【莫比乌斯反演】BZOJ3309 DZY Loves Math

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  7. BZOJ3309 DZY Loves Math 【莫比乌斯反演】

    题目 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(si ...

  8. codeforces 447C. DZY Loves Sequences 解题报告(446A)

    题目链接:http://codeforces.com/problemset/problem/447/C 题目意思:给出 一个 包含 n 个数的序列你,从中需要找出这个序列的最长子串,满足在里面只修改其 ...

  9. codeforces 445B. DZY Loves Chemistry 解题报告

    题目链接:http://codeforces.com/problemset/problem/445/B 题目意思:给出 n 种chemicals,当中有 m 对可以发生反应.我们用danger来评估这 ...

随机推荐

  1. java四种访问权限修饰符

    java中四个访问权限修饰符: public(公开的).protected(受保护的).default(默认的).private(私有的). 它们决定了紧跟其后被定义的东西的使用范围. 适用范围< ...

  2. Django 前后端不分离 代码结构详解

    Demo:  hello_pycharm 根目录文件:hello_pycharm [__init__.py  __pycache__  settings.py  urls.py  wsgi.py] A ...

  3. Hands on Machine Learning with Sklearn and TensorFlow学习笔记——机器学习概览

    一.什么是机器学习? 计算机程序利用经验E(训练数据)学习任务T(要做什么,即目标),性能是P(性能指标),如果针对任务T的性能P随着经验E不断增长,成为机器学习.[这是汤姆米切尔在1997年定义] ...

  4. Erlang数据类型的表示和实现(3)——列表

    列表 Erlang 中的列表是通过链表实现的,表示列表的 Eterm 就是这个链表的起点.列表 Eterm 中除去 2 位标签 01 之外,剩下的高 62 位表示指向列表中第一个元素的指针的高 62 ...

  5. 关于MySql8.X设置允许root远程登陆的问题

    这是最近在mac上使用mysql workbench上遇到的一个小问题,仔细想了想其实这个问题本身就有毛病,论起正式环境来哪家公司是直接使用root去远程登录的呢?恐怕没几个,so不纠结root了创建 ...

  6. 2017秋软工 —— 本周PSP

    1. PSP 2. PSP饼图 3. 累计进度条 4. 累计折线图

  7. [buaa-SE-2017]个人作业-回顾

    个人作业-回顾 提问题的博客:[buaa-SE-2017]个人作业-Week1 Part1: 问题的解答和分析 1.1 问题:根据书中"除了前20的学校之外,计科和软工没有区别"所 ...

  8. 20135316王剑桥 linux第六周课实验笔记

    6.存储器层次结构 6.1存储技术 1.如果你的程序需要的数据是存储在CPU寄存器中的,那么在执行期间,在零个周期内就能访问到它们.如果存储在高速缓冲中,需要1-10个周期.如果存储在主存中,需要50 ...

  9. 20145214 《网络对抗技术》 Web安全基础实践

    20145214 <网络对抗技术> Web安全基础实践 1.实验后回答问题 (1)SQL注入攻击原理,如何防御 SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的 ...

  10. 用java进行简单的万年历编写

    import java.util.Scanner; public class PrintCalendarDemo1 { public static void main(String[] args) { ...