SuperMemo
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 6841   Accepted: 2268
Case Time Limit: 2000MS

Description

Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1A2, ... An}. Then the host performs a series of operations and queries on the sequence which consists:

  1. ADD x y D: Add D to each number in sub-sequence {Ax ... Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5, 5}
  2. REVERSE x y: reverse the sub-sequence {Ax ... Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4, 3, 2, 5}
  3. REVOLVE x y T: rotate sub-sequence {Ax ... AyT times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
  4. INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
  5. DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
  6. MIN x y: query the participant what is the minimum number in sub-sequence {Ax ... Ay}. For example, the correct answer to "MIN 2 4" on {1, 2, 3, 4, 5} is 2

To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct answer to each query in order to assist Jackson whenever he calls.

Input

The first line contains (≤ 100000).

The following n lines describe the sequence.

Then follows M (≤ 100000), the numbers of operations and queries.

The following M lines describe the operations and queries.

Output

For each "MIN" query, output the correct answer.

Sample Input

5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5

Sample Output

5

Source

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/28 19:39:45
File Name :F:\2013ACM练习\专题学习\splay_tree_2\POJ3580.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* 给定一个数列:a1,a2,.... an
* 进行以下6种操作:
* ADD x y D : 给第x个数到第y个数加D
* REVERSE x y : 反转[x,y]
* REVOVLE x y T : 对[x,y]区间的数循环右移T次
* (先把T对长度取模,然后相当于把[y-T+1,y]放到[x,y-T] 的前面)
* INSERT x P : 在第x个数后面插入P
* DELETE x : 删除第x个数
* MIN x y : 查询[x,y]之间的最小的数
*/
#define Key_value ch[ch[root][1]][0]
const int MAXN = ;
const int INF = 0x3f3f3f3f;
int pre[MAXN],ch[MAXN][],root,tot1,size[MAXN];
int key[MAXN],rev[MAXN],m[MAXN],add[MAXN];
int s[MAXN],tot2;
int a[MAXN];
int n;
void NewNode(int &r,int father,int k)
{
if(tot2) r = s[tot2--];
else r = ++tot1;
pre[r] = father;
ch[r][] = ch[r][] = ;
key[r] = k;
m[r] = k;
rev[r] = add[r] = ;
size[r] = ;
}
void Update_Rev(int r)
{
if(!r)return;
swap(ch[r][],ch[r][]);
rev[r] ^= ;
}
void Update_Add(int r,int D)
{
if(!r)return;
m[r] += D;
key[r] += D;
add[r] += D;
}
void push_up(int r)
{
size[r] = size[ch[r][]] + size[ch[r][]] + ;
m[r] = min(key[r],min(m[ch[r][]],m[ch[r][]]));
}
void push_down(int r)
{
if(rev[r])
{
Update_Rev(ch[r][]);
Update_Rev(ch[r][]);
rev[r] = ;
}
if(add[r])
{
Update_Add(ch[r][],add[r]);
Update_Add(ch[r][],add[r]);
add[r] = ;
}
}
void Build(int &x,int l,int r,int father)
{
if(l > r)return;
int mid = (l+ r)/;
NewNode(x,father,a[mid]);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
push_up(x);
}
void Init()
{
root = tot1 = tot2 = ;
ch[root][] = ch[root][] = pre[root] = ;
rev[root] = add[root] = ;
m[root] = INF;
size[root] = ;
NewNode(root,,-);
NewNode(ch[root][],root,-);
for(int i = ;i < n;i++)
scanf("%d",&a[i]);
Build(Key_value,,n-,ch[root][]);
push_up(ch[root][]);
push_up(root);
}
void Rotate(int x,int kind)
{
int y = pre[x];
push_down(y);
push_down(x);
ch[y][!kind] = ch[x][kind];
pre[ch[x][kind]] = y;
if(pre[y])
ch[pre[y]][ch[pre[y]][]==y] = x;
pre[x] = pre[y];
ch[x][kind] = y;
pre[y] = x;
push_up(y);
}
void Splay(int r,int goal)
{
push_down(r);
while(pre[r] != goal)
{
if(pre[pre[r]] == goal)
{
push_down(pre[r]);
push_down(r);
Rotate(r,ch[pre[r]][]==r);
}
else
{
push_down(pre[pre[r]]);
push_down(pre[r]);
push_down(r);
int y = pre[r];
int kind = ch[pre[y]][]==y;
if(ch[y][kind] == r)
{
Rotate(r,!kind);
Rotate(r,kind);
}
else
{
Rotate(y,kind);
Rotate(r,kind);
}
}
}
push_up(r);
if(goal == ) root = r;
} int Get_kth(int r,int k)
{
push_down(r);
int t = size[ch[r][]] + ;
if(t == k) return r;
if(t > k) return Get_kth(ch[r][],k);
else return Get_kth(ch[r][],k-t);
} void ADD(int x,int y,int D)
{
Splay(Get_kth(root,x),);
Splay(Get_kth(root,y+),root);
Update_Add(Key_value,D);
push_up(ch[root][]);
push_up(root);
}
void Reverse(int x,int y)
{
Splay(Get_kth(root,x),);
Splay(Get_kth(root,y+),root);
Update_Rev(Key_value);
push_up(ch[root][]);
push_up(root);
}
void REVOLVE(int x,int y,int T)
{
int len = y - x + ;
T = ( T%len + len )%len;
Splay(Get_kth(root,y-T+),);
Splay(Get_kth(root,y+),root);
int tmp = Key_value;
Key_value = ;
push_up(ch[root][]);
push_up(root);
Splay(Get_kth(root,x),);
Splay(Get_kth(root,x+),root);
Key_value = tmp;
pre[tmp] = ch[root][];
push_up(ch[root][]);
push_up(root);
}
void INSERT(int x,int P)
{
Splay(Get_kth(root,x+),);
Splay(Get_kth(root,x+),root);
NewNode(Key_value,ch[root][],P);
push_up(ch[root][]);
push_up(root);
}
void erase(int r)
{
if(!r)return;
s[++tot2] = r;
erase(ch[r][]);
erase(ch[r][]);
}
void DELETE(int x)
{
Splay(Get_kth(root,x),);
Splay(Get_kth(root,x+),root);
erase(Key_value);
pre[Key_value] = ;
Key_value = ;
push_up(ch[root][]);
push_up(root);
}
int MIN(int x,int y)
{
Splay(Get_kth(root,x),);
Splay(Get_kth(root,y+),root);
return m[Key_value];
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n) == )
{
Init();
int x,y,z;
char op[];
int q;
scanf("%d",&q);
while(q--)
{
scanf("%s",op);
if(strcmp(op,"ADD") == )
{
scanf("%d%d%d",&x,&y,&z);
ADD(x,y,z);
}
else if(strcmp(op,"REVERSE") == )
{
scanf("%d%d",&x,&y);
Reverse(x,y);
}
else if(strcmp(op,"REVOLVE") == )
{
scanf("%d%d%d",&x,&y,&z);
REVOLVE(x,y,z);
}
else if(strcmp(op,"INSERT") == )
{
scanf("%d%d",&x,&y);
INSERT(x,y);
}
else if(strcmp(op,"DELETE") == )
{
scanf("%d",&x);
DELETE(x);
}
else if(strcmp(op,"MIN") == )
{
scanf("%d%d",&x,&y);
printf("%d\n",MIN(x,y));
}
}
}
return ;
}

POJ 3580 SuperMemo (splay tree)的更多相关文章

  1. 伸展树(Splay Tree)进阶 - 从原理到实现

    目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3 ...

  2. 数据结构(二) --- 伸展树(Splay Tree)

    文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator ...

  3. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

  4. HDU 1890 Robotic Sort (splay tree)

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. 平衡树之伸展树(Splay Tree)题目整理

    目录 前言 练习1 BZOJ 3224 普通平衡树 练习2 BZOJ 3223 文艺平衡树 练习3 BZOJ 1588 [HNOI2002]营业额统计 练习4 BZOJ 1208 [HNOI2004] ...

  6. 伸展树(splay tree)

    伸展树的设计思路,鉴于数据访问的局部性(28原则)在实际应用中普遍存在,将按照"最常用者优先"的启发策略.尽管在最坏情况下其单次操作需要 O(n) 时间,但分摊而言仍然 O(log ...

  7. BZOJ 1269: [AHOI2006]文本编辑器editor (splay tree)

    1269: [AHOI2006]文本编辑器editor Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1213  Solved: 454[Submit ...

  8. HDU 3436 Queue-jumpers (splay tree)

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. HDU 1890--Robotic Sort(Splay Tree)

    题意:每次找出第i大的数的位置p输出,然后将i~p之间的数反转. 题解:每次把要的区间转成一棵子树,然后更新.因为每次将第i小的数转到了了i,所以k次操作后,可知前k个数一定是最小的那k个数,所以以后 ...

随机推荐

  1. 使用PyMongo访问需要认证的MongoDB

    Windows 10家庭中文版,Python 3.6.4,PyMongo 3.7.0,MongoDB 3.6.3,Scrapy 1.5.0, 前言 在Python中,使用PyMongo访问Mongod ...

  2. 决策树和adaboost

    前面:好老的东西啊,啊啊啊啊啊啊啊啊啊 来源于统计学习方法: 信息增益: 其中 信息增益率: 基尼指数: 取gini最小的 先剪枝——在构造过程中,当某个节点满足剪枝条件,则直接停止此分支的构造. 后 ...

  3. iframe框架加载完成后执行函数

    var iframe = document.createElement("iframe"); iframe.src = "http://www.baidu.com/&qu ...

  4. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

  5. Knockout应用开发指南 应用举例(简单、高级)

    Knockout应用开发指南 第八章:简单应用举例(1)http://www.cnblogs.com/TomXu/archive/2011/11/30/2257067.htmlKnockout应用开发 ...

  6. Spark(六)Spark之开发调优以及资源调优

    Spark调优主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分.开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主 ...

  7. Ionic Js十七:侧栏菜单

    一个容器元素包含侧边菜单和主要内容.通过把主要内容区域从一边拖动到另一边,来让左侧或右侧的侧栏菜单进行切换. 效果图如下所示:   用法 要使用侧栏菜单,添加一个父元素,一个中间内容 ,和一个或更 ...

  8. 层级目录结构的Makefile递归编译方法

    层级目录结构的Makefile编写方法. 层级目录结构的Makefile编写方法. 0.前言 1.如何编译整个工程 2.过滤每层不需要编译的目录 3将所有输出文件定向输出. 0.前言 假如现在有这样一 ...

  9. Kubernetes(k8s)集群部署(k8s企业级Docker容器集群管理)系列之部署master/node节点组件(四)

    0.前言 整体架构目录:ASP.NET Core分布式项目实战-目录 k8s架构目录:Kubernetes(k8s)集群部署(k8s企业级Docker容器集群管理)系列目录 1.部署master组件 ...

  10. Eclipse插件安装出现Duplicate location错误

    一.原因 1.曾今安装过此插件 2.曾今安装此插件的时候出现错误 二.解决方法[eclipse] - Help - Install new software - Available Software ...