git: https://github.com/linyi0604/MachineLearning

分别使用词袋法和nltk自然预言处理包提供的文本特征提取
 from sklearn.feature_extraction.text import CountVectorizer
import nltk
# nltk.download("punkt")
# nltk.download('averaged_perceptron_tagger') '''
分别使用词袋法和nltk自然预言处理包提供的文本特征提取
''' sent1 = "The cat is walking in the bedroom."
sent2 = "A dog was running across the kitchen."
# 使用词袋法 将文本转化为特征向量
count_vec = CountVectorizer()
sentences = [sent1, sent2]
# 输出转化后的特征向量
# print(count_vec.fit_transform(sentences).toarray())
'''
[[0 1 1 0 1 1 0 0 2 1 0]
[1 0 0 1 0 0 1 1 1 0 1]]
'''
# 输出转化后特征的含义
# print(count_vec.get_feature_names())
'''
['across', 'bedroom', 'cat', 'dog', 'in', 'is', 'kitchen', 'running', 'the', 'walking', 'was']
''' # 使用nltk对文本进行语言分析
# 对句子词汇分割和正则化 把aren't 分割成 are 和 n't I'm 分割成 I和'm
tokens1 = nltk.word_tokenize(sent1)
tokens2 = nltk.word_tokenize(sent2)
# print(tokens1)
# print(tokens2)
'''
['The', 'cat', 'is', 'walking', 'in', 'the', 'bedroom', '.']
['A', 'dog', 'was', 'running', 'across', 'the', 'kitchen', '.']
'''
# 整理词汇表 按照ASCII的顺序排序
vocab_1 = sorted(set(tokens1))
vocab_2 = sorted(set(tokens2))
# print(vocab_1)
# print(vocab_2)
'''
['.', 'The', 'bedroom', 'cat', 'in', 'is', 'the', 'walking']
['.', 'A', 'across', 'dog', 'kitchen', 'running', 'the', 'was']
'''
# 初始化stemer 寻找每个单词最原始的词根
stemmer = nltk.stem.PorterStemmer()
stem_1 = [stemmer.stem(t) for t in tokens1]
stem_2 = [stemmer.stem(t) for t in tokens2]
# print(stem_1)
# print(stem_2)
'''
['the', 'cat', 'is', 'walk', 'in', 'the', 'bedroom', '.']
['A', 'dog', 'wa', 'run', 'across', 'the', 'kitchen', '.']
'''
# 利用词性标注器 对词性进行标注
pos_tag_1 = nltk.tag.pos_tag(tokens1)
pos_tag_2 = nltk.tag.pos_tag(tokens2)
# print(pos_tag_1)
# print(pos_tag_2)
'''
[('The', 'DT'), ('cat', 'NN'), ('is', 'VBZ'), ('walking', 'VBG'), ('in', 'IN'), ('the', 'DT'), ('bedroom', 'NN'), ('.', '.')]
[('A', 'DT'), ('dog', 'NN'), ('was', 'VBD'), ('running', 'VBG'), ('across', 'IN'), ('the', 'DT'), ('kitchen', 'NN'), ('.', '.')]
'''

机器学习之路: python nltk 文本特征提取的更多相关文章

  1. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  2. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  3. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  4. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  5. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  6. python —— 文本特征提取 CountVectorize

    CountVectorize 来自:python学习 文本特征提取(二) CountVectorizer TfidfVectorizer 中文处理 - CSDN博客 https://blog.csdn ...

  7. 机器学习之路:python 文本特征提取 CountVectorizer, TfidfVectorizer

    本特征提取: 将文本数据转化成特征向量的过程 比较常用的文本特征表示法为词袋法词袋法: 不考虑词语出现的顺序,每个出现过的词汇单独作为一列特征 这些不重复的特征词汇集合为词表 每一个文本都可以在很长的 ...

  8. 【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理

    干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的 ...

  9. 【NLP】Python NLTK处理原始文本

    Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...

随机推荐

  1. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  2. VUE和ES6资源收集

    MDN https://developer.mozilla.org/zh-CN/docs/Web/JavaScript https://developer.mozilla.org/en/docs/We ...

  3. SolrJ案例实现搭建环境——(十五)

    案例

  4. ubuntu16.04 源码方法安装tensorflow

    参考博客:http://blog.csdn.net/zhaoyu106/article/details/52793183/,http://blog.csdn.net/u010900574/articl ...

  5. linux===sar命令性能监控

    sar介绍: sar是System Activity Reporter(系统活动情况报告)的缩写.sar工具将对系统当前的状态进行取样,然后通过计算数据和比例来表达系统的当前运行状态.它的特点是可以连 ...

  6. plsql developer配置

    一:今天plsql developer连接 出问题了 ,Oracleclient没正确安装 0.连接vpn 1.环境变量:TNS_ADMIN = D:\worksoftware\oracleClien ...

  7. CF312B 【Archer】

    容易算出这人第一次胜利的概率,第二次的,第三次的…… 好像可以无限乘下去 但是这题精度卡到1e-6 不妨设一个eps,当这次胜率小于eps时,就break掉,反正它已经不影响答案了 我设的是eps=1 ...

  8. 汇编看C函数调用

    http://blog.csdn.net/wishfly/article/details/5022008   简单的函数调用,通过简单的函数调用反汇编可以清楚了解如下 1.栈到底是什么,如何操纵栈的? ...

  9. 20165333 2017-2018-2《Java程序设计》课程总结

    一.每周作业链接汇总 1.预备作业一:我期望的师生关系 简要内容: 印象深刻的老师 我期望的师生关系 关于JAVA学习 2.预备作业二:学习基础和C语言学习基础 简要内容: 技能学习 C语言学习 关于 ...

  10. element-ui 2.7.2版本使用 表格展开行 功能遇到的奇葩问题?

    在使用 element-ui 2.7.2版本的时候报下面的错误: [Vue warn]: Error in callback for watcher "data": "E ...