参考:

https://blog.csdn.net/wuliusir/article/details/45010129

https://blog.csdn.net/zhong_han_jun/article/details/50814246

1.split的计算方式:

splitsize = max(splitsize,min(blocksize,filesize/NUMmaps))

NUMmaps即为默认的map数,默认为1,也就是说最大的splitsize为文件的大小。

2.不同的hive.input.format时map个数

hive 的split size在使用不同的input format时依赖的参数不同。

  • hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat

    此时由以下三个参数控制
mapred.max.split.size  #控制最大split
mapred.min.split.size.per.node #控制最小split,优先级低
mapred.min.split.size.per.rack #控制最小split,优先级高
  • hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat

    此时由
mapred.min.split.size
mapred.map.tasks #可以忽略,默认为1

在做split时,不如一个split的数据也会放到一个map执行,如果splitsize 128m,文件150m,则会有两个map,一个128m,另外一个22m,这样两个map执行的时间就不一样了

注意

把mapred.min.split.size\mapred.min.split.size.per.node 从128M增加到256M,可能并不会降低map数,这时需要增大数值,一边增加一边测试

3.reduce个数

reduce可以通过设置set mapred.reduce.tasks=100来指定个数,或者指定reduce计算的数据,set hive.exec.reducers.bytes.per.reducer=1073741824

以下是个样例:

set mapred.max.split.size=1024000000;
set mapred.min.split.size.per.node=512000000;
set mapred.min.split.size.per.rack=512000000;
set mapreduce.task.io.sort.mb=200;
set hive.exec.parallel.thread.number=1 ;
set mapred.reduce.tasks = 314;
set mapreduce.map.memory.mb=1024;
set mapreduce.task.io.sort.factor=50;

3.控制hive map reduce个数的更多相关文章

  1. 【转】hive优化之--控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置 ...

  2. hive优化之------控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的 ...

  3. hive优化之——控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  4. Hive任务优化--控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  5. map和reduce 个数的设定 (Hive优化)经典

    一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置 ...

  6. 如何在hadoop中控制map的个数

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  7. 如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  8. Map/Reduce 工作机制分析 --- 作业的执行流程

    前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易& ...

  9. Map/Reduce个人实战--生成数据测试集

    背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, ...

随机推荐

  1. Ubuntu14.04更换阿里云源

    步骤很简单一共三步,如下所示: 第一.备份源文件(防止万一) sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak 第二.修改源文件(这里的源 ...

  2. TreeMap实现原理及源码分析之JDK8

    转载 Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例 一.TreeMap 简单介绍 什么是Map? 在数组中我们通过数组下标来对数组内容进行索引的,而在Map中我们通过对象来对 ...

  3. python file的3中读法

    f.read()  整个文件读入到内存,全部放入到一个string中 f.readlines() 文件全部内容解析成行列表,自带\n,需要print i, f.readline()一行一行,返回字符串 ...

  4. 从CMDB查询云平台组件或者IP简单脚本

    #!/bin/bash#author xiaoweige#todo: ip -- > ingredient or ingredient -- > ip #todo: get the ip ...

  5. Ajax第二天——JQuery的Ajax

    JQuery中的Ajax  jQuery 对 Ajax 操作进行了封装, 在 jQuery 中最底层的方法是 $.ajax(), 第二层是 load(), $.get() 和 $.post(), (常 ...

  6. 20145234黄斐《网络对抗技术》实验八、Web基础

    Apache 先通过apachectl start命令开启Apach,使用netstat -aptn命令查看端口占用: 因为端口号80已经被占用(上次实验设置的),所以先修改/etc/apache2/ ...

  7. v$pwfile_user表

    SQL> select * from v$pwfile_users;select * from v$pwfile_users; USERNAME SYSDB SYSOP SYSAS------- ...

  8. c++ 文件操作 重新命名 删除

    教学内容:  l 文件重命名rename l 文件删除remove   文件重命名rename int rename( const char *oldname, const char *newname ...

  9. 9.26 开课第二十三天 (JS表单验证)

    <form action="lizi1.html" method="post"> 非空验证 <input type="text&qu ...

  10. code first 创建数据库,add-migration update-database

    第一步: 第二步: