批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。
为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。此时线性回归的假设函数为:
\[ h_{\theta} (x^{(i)})=\theta_1 x^{(i)}+\theta_0 \]
其中 $ i=1,2,...,m $ 表示样本数。
对应的目标函数(代价函数)即为:
\[ J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})^2 \]
下图为 $ J(\theta_0,\theta_1) $ 与参数 $ \theta_0,\theta_1 $ 的关系的图:

1、批量梯度下降(Batch Gradient Descent,BGD)
批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:
(1)对目标函数求偏导:
\[ \frac{\Delta J(\theta_0,\theta_1)}{\Delta \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} \]
其中 $ i=1,2,...,m $ 表示样本数, $ j = 0,1 $ 表示特征数,这里我们使用了偏置项 $ x_0^{(i)} = 1 $ 。
(2)每次迭代对参数进行更新:
\[ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} \]
注意这里更新时存在一个求和函数,即为对所有样本进行计算处理,可与下文SGD法进行比较。
伪代码形式为:
repeat{
$ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} $
(for j =0,1)
}
优点:
(1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
(2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
缺点:
(1)当样本数目 $ m $ 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。
从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2、随机梯度下降(Stochastic Gradient Descent,SGD)
随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新。使得训练速度加快。
对于一个样本的目标函数为:
\[ J^{(i)}(\theta_0,\theta_1) = \frac{1}{2}(h_{\theta}(x^{(i)})-y^{(i)})^2 \]
(1)对目标函数求偏导:
\[ \frac{\Delta J^{(i)}(\theta_0,\theta_1)}{\theta_j} = (h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j \]
(2)参数更新:
\[ \theta_j := \theta_j - \alpha (h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j \]
注意,这里不再有求和符号
伪代码形式为:
repeat{
for i=1,...,m{
$ \theta_j := \theta_j -\alpha (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)} $
(for j =0,1)
}
}
优点:
(1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。
缺点:
(1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
(2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
(3)不易于并行实现。
解释一下为什么SGD收敛速度比BGD要快:
答:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就能保证能够收敛到一个合适的最小值上了。也就是说,在收敛时,BGD计算了 $ 10 \times 30W $ 次,而SGD只计算了 $ 1 \times 30W $ 次。
从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3、小批量梯度下降(Mini-Batch Gradient Descent, MBGD)
小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 ** batch_size** 个样本来对参数进行更新。
这里我们假设 $ batch_size = 10 $ ,样本数 $ m=1000 $ 。
伪代码形式为:
repeat{
for i=1,11,21,31,...,991{
$ \theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{(i+9)}(h_{\theta}(x^{(k)})-y^{(k)})x_j^{(k)} $
(for j =0,1)
}
}
优点:
(1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
(2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)
(3)可实现并行化。
缺点:
(1)batch_size的不当选择可能会带来一些问题。
batcha_size的选择带来的影响:
(1)在合理地范围内,增大batch_size的好处:
a. 内存利用率提高了,大矩阵乘法的并行化效率提高。
b. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
c. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
(2)盲目增大batch_size的坏处:
a. 内存利用率提高了,但是内存容量可能撑不住了。
b. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
c. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。
下图显示了三种梯度下降算法的收敛过程:

引用及参考:
[1] https://www.cnblogs.com/maybe2030/p/5089753.html
[2] https://zhuanlan.zhihu.com/p/37714263
[3] https://zhuanlan.zhihu.com/p/30891055
[4] https://www.zhihu.com/question/40892922/answer/231600231
写在最后:本文参考以上资料进行整合与总结,文章中可能出现理解不当的地方,若有所见解或异议可在下方评论,谢谢!
若需转载请注明:https://www.cnblogs.com/lliuye/p/9451903.html
批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解的更多相关文章
- 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度 ...
- 梯度下降GD,随机梯度下降SGD,小批量梯度下降MBGD
阅读过程中的其他解释: Batch和miniBatch:(广义)离线和在线的不同
- 各种梯度下降 bgd sgd mbgd adam
转载 https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法 在调整模型更新权重和偏差 ...
- 优化-最小化损失函数的三种主要方法:梯度下降(BGD)、随机梯度下降(SGD)、mini-batch SGD
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent). 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中, ...
- NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...
- L20 梯度下降、随机梯度下降和小批量梯度下降
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenbe ...
- 【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会 ...
- 监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...
- 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...
随机推荐
- watir-webdriver 中根据html5中的data-*属性设置元素
def jscript(key="",*hashdict) key_dict=hashdict[0].keys[0] value_dict=hashdict[0][key_dict ...
- golang实现简单的栈
栈的ADT 数据 栈的数据对象集合为{a1,a2,a3...an},具有相同数据类型,有唯一前驱后续 操作 InitStack() *Stack //初始化操作,创建一个空栈 Clear() //清空 ...
- linux 用时间创建文件夹
命令: mkdir `date +%Y%m%d%H%M%S`
- JavaWeb基础—EL表达式与JSTL标签库
EL表达式: EL 全名为Expression Language.EL主要作用 获取数据(访问对象,访问数据,遍历集合等) 执行运算 获取JavaWeb常用对象 调用Java方法(EL函数库) 给出一 ...
- UWP Read write File -StorageFile
// private void MainPage_Loaded(object sender, RoutedEventArgs e) { GetFileAsync(); } public async v ...
- # 课堂测试(CH6)20155218
课堂测试(CH6) 1. 下面代码中,对数组x填充后,采用直接映射高速缓存,所有对x和y引用的命中率为(D) A . 1 B . 1/4 C . 1/2 D . 3/4 解析:在x[0],y[0]时发 ...
- BZOJ1026_windy数_KEY
题目传送门 数位DP,其实只要求1~A-1和1~B就可以了.两数相减即为答案. 考虑怎们求1~A. 设f[i][j]表示到第i位,为j的windy数总数. 由前一位差值大于1的方程转移. 但是统计答案 ...
- PostgreSQL数据库表名的大小写实验
磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面:PostgreSQL基础知识与基本操作索引页 回到顶级页面:PostgreSQL索引页[作者 高健@博客园 luckyjackgao@g ...
- CSS盒模型 flex
用于网页布局,PC的话,兼容性不够,慎用,手机端的话,神器 整理部分通用的,可以直接复制的,省得下次再写一遍 注意,设为 Flex 布局以后,子元素的float.clear和vertical-alig ...
- OpenGL学习笔记(2) 画一个正方形
画一个正方形 其实,画正方形就是画两个三角形,用四个顶点以及使用索引来实现 完整代码在Square项目的Application.cpp里 先贴上窗口初始化代码 void BaseInit() { gl ...