There are G people in a gang, and a list of various crimes they could commit.

The i-th crime generates a profit[i] and requires group[i] gang members to participate.

If a gang member participates in one crime, that member can't participate in another crime.

Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

Example 1:

Input: G = 5, P = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation:
To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.

Example 2:

Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation:
To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

Note:

  1. 1 <= G <= 100
  2. 0 <= P <= 100
  3. 1 <= group[i] <= 100
  4. 0 <= profit[i] <= 100
  5. 1 <= group.length = profit.length <= 100

Approach #1: DP. [C++]

class Solution {
public:
int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {
const int mod = 1000000007;
int K = group.size();
vector<vector<vector<int>>> dp(K+1, vector<vector<int>>(P+1, vector<int>(G+1, 0)));
dp[0][0][0] = 1;
for (int k = 1; k <= K; ++k) {
int p = profit[k-1];
int g = group[k-1];
for (int i = 0; i <= P; ++i) {
for (int j = 0; j <= G; ++j) {
dp[k][i][j] = (dp[k-1][i][j] + (j < g ? 0 : dp[k-1][max(0, i-p)][j-g])) % mod;
}
}
} return accumulate(begin(dp[K][P]), end(dp[K][P]), 0LL) % mod;
}
};

  

Approach #2: DP. [Java]

class Solution {
private int mod = (int)1e9 + 7;
public int profitableSchemes(int G, int P, int[] group, int[] profit) {
int[][] dp = new int[G+1][P+1];
dp[0][0] = 1;
for (int k = 1; k <= group.length; ++k) {
int g = group[k-1];
int p = profit[k-1];
for (int i = G; i >= g; --i) {
for (int j = P; j >= 0; --j) {
dp[i][j] = (dp[i][j] + dp[i-g][Math.max(0, j-p)]) % mod;
}
}
}
int sum = 0;
for (int i = 0; i <= G; ++i)
sum = (sum + dp[i][P]) % mod; return sum;
}
}

  

Analysis:

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-879-profitable-schemes/

879. Profitable Schemes的更多相关文章

  1. [LeetCode] 879. Profitable Schemes 盈利方案

    There are G people in a gang, and a list of various crimes they could commit. The i-th crime generat ...

  2. [Swift]LeetCode879. 盈利计划 | Profitable Schemes

    There are G people in a gang, and a list of various crimes they could commit. The i-th crime generat ...

  3. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  4. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

  5. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  6. 【LeetCode】动态规划(下篇共39题)

    [600] Non-negative Integers without Consecutive Ones [629] K Inverse Pairs Array [638] Shopping Offe ...

  7. 【Leetcode周赛】从contest-91开始。(一般是10个contest写一篇文章)

    Contest 91 (2018年10月24日,周三) 链接:https://leetcode.com/contest/weekly-contest-91/ 模拟比赛情况记录:第一题柠檬摊的那题6分钟 ...

  8. URL Schemes

    APP 被唤醒离不开对URL Schemes的认知. 苹果选择沙盒来保障用户的隐私和安全,但沙盒也阻碍了应用间合理的信息共享,于是有了 URL Schemes 这个解决办法. URL Schemes ...

  9. 你所知道好玩有趣的 iOS URL schemes 有哪些?

    QQ的url是 mqq:// 微信是weixin:// 淘宝taobao:// 点评dianping:// dianping://search 微博 sinaweibo:// 名片全能王camcard ...

随机推荐

  1. VC字符串处理整理

    场景: 1.在存储数据时有时接口需要合并字符串值,并以某些特殊字符来合并部分,到需要的时候再分割它.如一些数值,人名等. 2.C++有strtok,stringstream和find函数来实现分割.可 ...

  2. WPF之DataGrid控件根据某列的值设置行的前景色(色

    一种方法是 使用 datagrid的LoadingRow事件: private void DataGrid_LoadingRow(object sender, DataGridRowEventArgs ...

  3. 用AI制作炫酷效果

    PART1:制作第一个效果 步骤一:新建一个800*600的画布. 骤二:从工具栏选“矩形工具”,创建一个800*600的矩形.白色的是画布,浅红色(我的AI之前保留的填充颜色,每个人都不一样)的是你 ...

  4. Netty 系列(三)Netty 入门

    Netty 系列(三)Netty 入门 Netty 是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠性的网络服务器和客户端程序.更多请参考:Netty Github 和 Netty中文 ...

  5. Socket-IO 系列(三)基于 NIO 的同步非阻塞式编程

    Socket-IO 系列(三)基于 NIO 的同步非阻塞式编程 缓冲区(Buffer) 用于存储数据 通道(Channel) 用于传输数据 多路复用器(Selector) 用于轮询 Channel 状 ...

  6. 2018软工项目UML设计(团队)

    团队信息 队名:火箭少男100 本次作业课上成员 短学号 名 本次作业博客链接 2507 俞辛(临时队长) https://www.cnblogs.com/multhree/p/9821080.htm ...

  7. arduino 与 android 通过TCP进行字节收发

    arduino #include <avr/wdt.h> #include <SoftwareSerial.h> #define FPIN 13 SoftwareSerial ...

  8. win10 新增删除文件不刷新

    实际上是桌面图标缓存出问题,以下是一个简单动作即可解决问题. 按Win+R键打开“运行”窗口,输入如下命令后按回车键执行: ie4uinit -show 立竿见影,效果同360,魔方等工具软件,可参考 ...

  9. Can not find the tag library descriptor for "/struts-tags"`

    1.查看struts.xml路径是否错误,要放在src下, 2.缺少struts-tags.tld (1)查找方式: (2)找到此包,然后右键用解压缩文件打开. (3)然后你会看到很多的源码,找到红圈 ...

  10. UVa 11280 Flying to Fredericton (DP + Dijkstra)

    题意:给出n(2<=n<=100)个城市之间的m(0<=m<=1000)条航线以及对应的机票价格,要求回答一些询问,每个询问是给出最大停留次数S,求从其实城市Calgary到终 ...