解题:BZOJ 2818 GCD
转化一下题目,即是求$1$到$n$中对于某个素数$pri$使得$gcd(x*pri,y*pri)=pri$的$(x,y)$的数目
这样一来就可以考虑每个质数$pri$对答案的贡献,即为$1$到$\frac{n}{pri}$中互质对的个数。设$x<y$则$x$有$φ(y)$个取值使$x,y$互质,因为有序就乘上一个$2$。对$φ$做前缀和,每次去掉$(1,1)$的重即可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+,P=1e6+;
int pri[P];
bool npr[N];
long long phi[N];
long long n,cnt,ans;
void prework(int maxx)
{
phi[]=,npr[]=true;
for(int i=;i<=maxx;i++)
{
if(!npr[i]) pri[++cnt]=i,phi[i]=i-;
for(int j=;j<=cnt&&i*pri[j]<=maxx;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
int main ()
{
scanf("%lld",&n),prework(n);
for(int i=;i<=n;i++) phi[i]+=phi[i-];
for(int i=;i<=cnt;i++) ans+=*phi[n/pri[i]]-;
printf("%lld",ans);
return ;
}
解题:BZOJ 2818 GCD的更多相关文章
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4443 Solved: 1960[Submit][Status][Discuss ...
- bzoj 2818: Gcd GCD(a,b) = 素数
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1566 Solved: 691[Submit][Status] Descript ...
- bzoj 2818: Gcd 歐拉函數
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1633 Solved: 724[Submit][Status] Descript ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- bzoj 2818 gcd 线性欧拉函数
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...
- BZOJ 2818: Gcd 筛法
2818: Gcd 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2818 Description 给定整数N,求1<=x,y< ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
随机推荐
- 金融科技行业 SDL(转载)
都是一些检查项,值得借鉴,关键在于要能够落地 作者 沈发挺@美的金融科技下载打印版
- ipcs命令详解
基础命令学习目录首页 多进程间通信常用的技术手段包括共享内存.消息队列.信号量等等,Linux系统下自带的ipcs命令是一个极好的工具,可以帮助我们查看当前系统下以上三项的使用情况,从而利于定位多进程 ...
- Daily Scrum (2015/10/30)
据组员们反映其他组都会有休息时间,所以我和PM讨论把每周5晚上作为日常休息时间,这一天组员们自由阅读.
- BETA5/7
前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...
- DPDK L2fwd 源码阅读
代码部分 /* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include ...
- python learning Exception & Debug.py
''' 在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因.在操作系统提供的调用中,返回错误码非常常见.比如打开文件的函数open(),成功时返 ...
- 【CSAPP笔记】1. 位、字节、整型
<Computer Systems a Programmer's Perspective>,机械工业出版社.中文译名<深入理解计算机系统>.作者:(美)Randal E.Bry ...
- WinForm中DataGridView的快速查找及将指定行显示到第一行
/// <summary> /// 快速在已绑定的列表查询车辆 /// </summary> /// <param name="sender"> ...
- Centos7 Zookeeper 集群安装
1:安装java 环境 -openjdk* 2:zookeeper 安装 (官网 http://www.apache.org/dyn/closer.cgi/zookeeper/) 2.1 目录创建 自 ...
- [转帖]USB-C和Thunderbolt 3连接线你搞懂了吗?---没搞明白.
USB-C和Thunderbolt 3连接线你搞懂了吗? 2018年11月25日 07:30 6318 次阅读 稿源:威锋网 3 条评论 按照计算行业的风潮,USB Type-C 将会是下一代主流的接 ...