决策单调性,对于一个1D/1D(状态是一维,转移也是一维)的DP,如果DP的决策具有单调性,那么就可以做到O(nlogn)的复杂度完成DP。

感谢《1D/1D  动态规划优化初步》的作者。

 /**************************************************************
Problem: 2216
User: idy002
Language: C++
Result: Accepted
Time:4916 ms
Memory:14476 kb
****************************************************************/ #include <cstdio>
#include <algorithm>
#include <cmath>
#define N 500010
using namespace std; struct Trid {
int p, l, r;
Trid(){}
Trid( int p, int l, int r ):p(p),l(l),r(r){}
}; int n;
int aa[N];
int f[N], g[N], h[N];
Trid stk[N]; int top; double calc( int j, int i ) {
return aa[j]-aa[i]+sqrt(abs(i-j));
}
void dodp( int dp[N] ) {
stk[top=] = Trid(,,n);
for( int i=; i<n; i++ ) {
if( calc(stk[top].p,n)>calc(i,n) ) continue; while( stk[top].l>=i &&
calc(stk[top].p,stk[top].l)<calc(i,stk[top].l) )
top--;
if( stk[top].r==i- ) {
stk[++top] = Trid( i, i, n );
} else {
int lf = max( stk[top].l+, i );
int rg = min( stk[top].r+, n );
int p = stk[top].p;
while( lf<rg ) {
int mid=(lf+rg)>>;
if( calc(p,mid) > calc(i,mid) ) lf=mid+;
else rg=mid;
}
stk[top].r = lf-;
stk[++top] = Trid( i, lf, n );
}
}
for( int i=; i<=top; i++ )
for( int j=stk[i].l; j<=stk[i].r; j++ )
dp[j] = stk[i].p;
}
int main() {
scanf( "%d", &n );
for( int i=; i<=n; i++ )
scanf( "%d", aa+i );
dodp(f);
reverse( aa+, aa++n );
dodp(g);
reverse( aa+, aa++n ); for( int i=; i<=n; i++ )
g[i] = n+-g[i];
reverse( g+, g++n ); for( int i=; i<=n; i++ )
if( calc(f[i],i)>calc(g[i],i) ) h[i]=f[i];
else h[i]=g[i];
for( int i=; i<=n; i++ )
printf( "%lld\n", (long long)ceil(calc(h[i],i)) );
}

bzoj 2011的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  2. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  3. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  4. bzoj 2441 [中山市选2011]小W的问题

    bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...

  5. BZOJ 2150 cogs 1861 [国家集训队2011]部落战争

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...

  6. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  7. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  8. 【BZOJ】【2440】【中山市选2011】完全平方数

    莫比乌斯函数/容斥原理 PoPoQQQ讲义引入例题= = 比较水……就是莫比乌斯函数的简单应用,也可理解为乱容斥一下…… 二分答案——>求1~x有多少个无平方因子的数Q(x). 引用一下PoPo ...

  9. Bzoj 2346: [Baltic 2011]Lamp dijkstra,堆

    2346: [Baltic 2011]Lamp Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 428  Solved: 179[Submit][Sta ...

随机推荐

  1. 【C++】数组-整数从大到小排序

    1.实现过程 定义整型数组src,长度为10,初始化为{11,12,47,24,49,69,90,89,18,39}.之后用嵌套for循环比较相邻两个元素的大小,如果前一个元素大于后一个,不做任何操作 ...

  2. Office DDE漏洞学习笔记

    1.前言 2017年下半年爆发出来的Office漏洞,一直没有空做笔记记录.在病毒分析中也看到有利用这个漏洞的样本,针对Office系列软件发起的钓鱼攻击和APT攻击一直是安全攻防的热点. 2.off ...

  3. 22 Gobs of data 设计和使用采集数据的包

    Gobs of data 24 March 2011 Introduction To transmit a data structure across a network or to store it ...

  4. Flask:使用Eclipse+PyDev插件编辑基于package的项目

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2,Eclipse Oxygen.1a Release (4.7.1a),PyDev 6.3.2 本文记录了 使用Ecli ...

  5. 洛谷P3366最小生成树

    传送门啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...

  6. emacs设置了单例模式后无法设定文件关联解决办法

    emacs设置单例模式的本质就是使用下列参数启动: C:\emacs-24.5\bin\emacsclientw.exe --no-wait --alternate-editor="C:\e ...

  7. HDU 4763 Theme Section(KMP+枚举公共前后缀)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4763 题目大意: 给你一个字符串s,存在一个子串E同时出现在前缀.中间.后缀,即EAEBE这种模式,A ...

  8. Oracle学习笔记:wm_concat函数合并字段

    在Oracle中使用wm_concat(column)可以实现字段的分组合并,逗号分隔. 例如,现有表temp_cwh_test: -- 创建临时表 create table temp_cwh_tes ...

  9. [Torch]的安装

    1 安装Torch 本文介绍Torch7的安装方法,因为本人安装Torch前安装了caffe,所以可能CUDA.cudnn.Blas等Torch可能需要用来的库的安装就不再重复介绍了,相关依赖出现问题 ...

  10. CVE-2012-1876Microsoft Internet Explorer Col元素远程代码执行漏洞分析

    Microsoft Internet Explorer是微软Windows操作系统中默认捆绑的WEB浏览器.         Microsoft Internet Explorer 6至9版本中存在漏 ...