zoj 3537 区间dp+计算几何
题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的费用,问最少的切割费用。
链接:点我
题解:点我
2015-07-20:专题复习
代码稍微修改了一下,顺便发现题号写错了
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
int x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
};
Point list[MAXN];
int Stack[MAXN],top;
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp=(p1-list[])^(p2-list[]);
if(sgn(tmp)>)return true;
else if(sgn(tmp)== && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k=;
p0=list[];
//找最下边的一个点
for(int i=;i < n;i++)
{
if( (p0.y>list[i].y) || (p0.y==list[i].y && p0.x>list[i].x) )
{
p0=list[i];
k=i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n==)
{
top=;
Stack[]=;
return;
}
if(n==)
{
top=;
Stack[]=;
Stack[]=;
return ;
}
Stack[]=;
Stack[]=;
top=;
for(int i=;i < n;i++)
{
while(top> && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++]=i;
}
}
int cost[MAXN][MAXN];
int dis(Point p1,Point p2)//计算题目定义的cost
{
return abs(p1.x+p2.x)*abs(p1.y+p2.y)%m;
}
int dp[MAXN][MAXN];
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(~scanf("%d%d",&n,&m))
{
for(i=;i<n;i++)
{
scanf("%d%d",&list[i].x,&list[i].y);
}
Graham(n);
if(top!=n)
{
puts("I can't cut.");
continue;
}
cl(cost);
for(i=;i<n;i++)
for(j=i+;j<n;j++)
cost[i][j]=cost[j][i]=dis(list[i],list[j]);
for(i=;i<n;i++)
{
for(j=i;j<n;j++)dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(int len=;len<n;len++)
{
for(i=;i+len<=n-;i++)
{
j=i+len;
for(k=i+;k<=j-;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
/*for(i=n-3;i>=0;i--)
{
for(j=i+2;j<n;j++)
{
for(k=i+1;k<=j-1;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}*/
printf("%d\n",dp[][n-]);
}
}
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
int x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
};
Point list[MAXN];
int Stack[MAXN],top;
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp=(p1-list[])^(p2-list[]);
if(sgn(tmp)>)return true;
else if(sgn(tmp)== && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k=;
p0=list[];
//找最下边的一个点
for(int i=;i < n;i++)
{
if( (p0.y>list[i].y) || (p0.y==list[i].y && p0.x>list[i].x) )
{
p0=list[i];
k=i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n==)
{
top=;
Stack[]=;
return;
}
if(n==)
{
top=;
Stack[]=;
Stack[]=;
return ;
}
Stack[]=;
Stack[]=;
top=;
for(int i=;i < n;i++)
{
while(top> && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++]=i;
}
}
int cost[MAXN][MAXN];
int dis(Point p1,Point p2)//计算题目定义的cost
{
return abs(p1.x+p2.x)*abs(p1.y+p2.y)%m;
}
int dp[MAXN][MAXN];
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(~scanf("%d%d",&n,&m))
{
for(i=;i<n;i++)
{
scanf("%d%d",&list[i].x,&list[i].y);
}
Graham(n);
if(top!=n)
{
puts("I can't cut.");
continue;
}
cl(cost);
for(i=;i<n;i++)
for(j=i+;j<n;j++)
cost[i][j]=cost[j][i]=dis(list[i],list[j]);
for(i=;i<n;i++)
{
for(j=i;j<n;j++)dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(i=n-;i>=;i--)
{
for(j=i+;j<n;j++)
{
for(k=i+;k<=j-;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
printf("%d\n",dp[][n-]);
}
}
zoj 3537 区间dp+计算几何的更多相关文章
- zoj 3469 区间dp **
题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...
- UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化
题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...
- UVa 1331 - Minimax Triangulation(区间DP + 计算几何)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- ZOJ 3469 区间DP Food Delivery
题解 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- [ZOJ]3541 Last Puzzle (区间DP)
ZOJ 3541 题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态 Description There is one ...
随机推荐
- .NET中如何自定义配置节点
.NET Framework在web.config或app.config中默认提供了很多种设置,以便能够改变应用程序内嵌组件的行为,例如<connectionStrings>.<ht ...
- 【划水闲谈】Terraria 1.3.5更新
我知道这本应是一个算法博客,但又有谁规定了不能发点其他内容呢? Terraria,一个有趣的沙盒游戏.在这里,你可以建造,挖掘,开始一次又一次新的冒险. 4月19日,Re-Logic承诺的官方中文版终 ...
- mysql修改表的存储引擎(myisam<=>innodb)【转】
修改表的存储引擎myisam<=>innodb 查看表的存储引擎mysql> show create table tt7;+-------+--------------------- ...
- Linux_僵尸进程、挂载、block块、inode号
僵尸进程: 基本概念: 进程分为父进程和子进程 父进程一死 子进程都会死 杀死主进程的时候 子进程也会被杀死 僵尸进程:主进程被杀死了 但是子进程还活着 子进程不会占用cpu但还是会占着内存 ...
- python随笔(三)
在对字符串的操作中,s[::-1]表示将字符串逆序输出. 字符串本身不能改变(管理者而非所有者) 列表的内容是可以改变的,且列表的内容可以不仅仅是字符串.对于一个列表,注意b=a和b=a[:]的区别. ...
- redis持久化的两种方式
redis是一个内存型数据库.当redis服务器重启时,数据会丢失.我们可以将redis内存中的数据持久化保存到硬盘的文件中. redis持久化有两种机制.RDB与AOF.默认方式是RDB. 1.RD ...
- Java 泛型和类型安全的容器
使用java SE5之前的容器的一个主要问题就是编译器允许你向容器插入不正确的类型,例如: //: holding/ApplesAndOrangesWithoutGenerics.java // Si ...
- CVE-2013-3346Adobe Reader和Acrobat 内存损坏漏洞分析
[CNNVD]Adobe Reader和Acrobat 内存损坏漏洞(CNNVD-201308-479) Adobe Reader和Acrobat都是美国奥多比(Adobe)公司的产品.Adobe R ...
- Django 学习总结(更新中)
1.常用命令 新建一个项目:django-admin.py startproject project-name 新建一个app:python manage.py startapp app-name 同 ...
- Spark入门2(Spark简析)
一.Spark核心概念-RDD RDD是弹性分布式数据集,一个RDD由多个partition构成,一个partition对应一个task.RDD的操作分为两种:Trasformation(把一个RDD ...