codevs 1789 最大获利

2006年NOI全国竞赛

 时间限制: 2 s
 空间限制: 128000 KB
 
题目描述 Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是 挑战。THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做 太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最 优化等项目。 在前期市场调查和站址勘测之后,公司得到了一共 N 个可以作为通讯信号中 转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需 要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i 个通讯中转站需要的成本为 Pi(1≤i≤N)。 另外公司调查得出了所有期望中的用户群,一共 M 个。关于第 i 个用户群的 信息概括为 Ai, Bi和 Ci:这些用户会使用中转站 Ai和中转站 Bi进行通讯,公司 可以获益 Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU 集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些 用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让 公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)

输入描述 Input Description

输入文件中第一行有两个正整数 N 和 M 。 第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为 P1, P2, …, PN 。 以下 M 行,第(i + 2)行的三个数 Ai, Bi和 Ci描述第 i 个用户群的信息。 所有变量的含义可以参见题目描述。

输出描述 Output Description

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

样例输入 Sample Input

5 5

1 2 3 4 5

1 2 3

2 3 4

1 3 3

1 4 2

4 5 3

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

选择建立 1、2、3 号中转站,则需要投入成本 6,获利为 10,因此得到最大 收益 4。

80%的数据中:N≤200,M≤1 000。

100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

最大权闭合子图

源点向所有用户连流量为收益的边

所有中转站向汇点连流量为成本的边

用户所需要的中转站,由用户向需要的中转站连inf边

然后用所有用户收益和-最小割

#include<cstdio>
#include<queue>
#include<algorithm>
#define N 55010
#define M 50001
#define inf 2e9
using namespace std;
int n,m,tot=;
int src,dec,sum;
int lev[N],cur[N],front[N],cap[M*],to[M*],next[M*];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v;next[tot]=front[u];front[u]=tot;cap[tot]=w;
to[++tot]=u;next[tot]=front[v];front[v]=tot;cap[tot]=;
}
bool bfs()
{
for(int i=;i<=dec;i++) {lev[i]=-;cur[i]=front[i];}
while(!q.empty()) q.pop();
q.push(src);lev[src]=;
while(!q.empty())
{
int now=q.front();q.pop();
for(int i=front[now];i;i=next[i])
{
int t=to[i];
if(cap[i]>&&lev[t]==-)
{
lev[t]=lev[now]+;
if(t==dec) return true;
q.push(t);
}
}
}
return false;
}
int dinic(int now,int flow)
{
if(now==dec) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=next[i])
{
int t=to[i];
if(cap[i]>&&lev[t]>lev[now])
{
delta=dinic(t,min(cap[i],flow-rest));
if(delta)
{
cap[i]-=delta;cap[i^]+=delta;
rest+=delta;if(rest==flow) break;
}
} }
if(rest!=flow) lev[now]=-;
return rest;
}
int main()
{
scanf("%d%d",&n,&m);
dec=n+m+;
int x,y,z;
for(int i=;i<=n;i++)
{
scanf("%d",&x);
add(i,dec,x);
}
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(src,n+i,z);
add(n+i,x,inf);
add(n+i,y,inf);
sum+=z;
}
while(bfs())
sum-=dinic(src,inf);
printf("%d",sum);
}

空间问题,今天下午第n次开小空间

NOI2006 最大获利(最大权闭合子图)的更多相关文章

  1. P4174 [NOI2006]最大获利 (最大权闭合子图)

    P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...

  2. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  3. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  4. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

  5. COGS28 [NOI2006] 最大获利[最大权闭合子图]

    [NOI2006] 最大获利 ★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] 新的技术正冲击着手 ...

  6. bzoj1497 最大获利(最大权闭合子图)

    题目链接 思路 对于每个中转站向\(T\)连一条权值为建这个中转站代价的边.割掉这条边表示会建这个中转站. 对于每个人向他的两个中转站连一条权值为\(INF\)的边.然后从\(S\)向这个人连一条权值 ...

  7. BZOJ 1497 最大获利(最大权闭合子图)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...

  8. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  9. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

随机推荐

  1. Alpha 冲刺报告3

    队名 massivehard 组员一(组长:晓辉) 今天完成了哪些任务 .整理昨天的两个功能,补些bug 写了一个初步的loyaut github 还剩哪些任务: 后台的用来处理自然语言的服务器还没架 ...

  2. .NET项目中常用的32个正则表达式总结

    最近没事总结了下最近所用到的正则表达式,下面32个是经常用到的,总结下来与大家分享. . "^-?[1-9]\\d*$",//整数 . "^[1-9]\\d*$" ...

  3. Pytest - 进阶功能fixture

    1. 概述 Pytest的fixture功能灵活好用,支持参数设置,便于进行多用例测试,简单便捷,颇有pythonic.如果要深入学习pytest,必学fixture. fixture函数的作用: 完 ...

  4. [转帖].net 4.8 将不再支持win7 win8 版本

    ZT:https://blogs.msdn.microsoft.com/dotnet/2018/07/18/announcing-net-framework-4-8-early-access-buil ...

  5. BeanCopier

    cglib是一款比较底层的操作java字节码的框架. 下面通过拷贝bean对象来测试BeanCopier的特性: public class OrderEntity { private int id; ...

  6. [C/C++] 输入函数getline(cin,str) 与cin.getline(str,int)区别

    cin.getline()函数是处理数组字符串的,其原型为cin.getline(char * , int),第一个参数为一个char指针,第二个参数为数组字符串长度. getline(cin,str ...

  7. 打开eclipse编译后的.class文件

    众所周知,用文本编辑器打开.class文件会乱码.我们可以使用命令行打开.class文件项目结构: 代码: public class Synchronized { public static void ...

  8. python mysql开发日志

    开始做python 的数据库访问了,暂时选定了mysql数据库.原本想使用ORM,后来考虑到项目的情况是:表结构不复杂,但是数据库非常大.还是自己来操作sql,不过PYTHON的那些数据库ORM的代码 ...

  9. 【BZOJ1048】分割矩阵(记忆化搜索,动态规划)

    [BZOJ1048]分割矩阵(记忆化搜索,动态规划) 题面 BZOJ 洛谷 题解 一个很简单的\(dp\),写成记忆化搜索的形式的挺不错的. #include<iostream> #inc ...

  10. linux内核分析 第五周读书笔记

    第18章 调试 内核调试的难度大于用户级 一.准备开始 开始之前需要的是: 一个行为可靠且定义明确的bug 一个隐匿bug的内核版本 相关内核代码的知识和运气 想要成功的调试,取决于能不能将这些bug ...