matlab随笔
主要是记录一些函数。(博客园的一些操作实在是太不方便了)
cat函数:http://blog.sina.com.cn/s/blog_6b7dfd9d0100mnz7.html 联结两个数组
magic函数:http://www.zybang.com/question/35d2722c6a92175112b76dda11c0c961.html
M = magic(n)
生成一个n*n的矩阵,矩阵元素是由整数1到n^2组成的并且任何行任何列的和都相等,阶数n必须是大于等于3的标量.三阶幻方为:
M = magic(3)
M =
8 1 6
3 5 7
4 9 2
之所以叫做幻方是因为它的每一列的和是相同的.
sum(M) =
15 15 15
计算每一行的和,包含两次转置也是相同的.
sum(M')' =
15
15
15
这是一个特殊的幻方因为其对角线元素和也是这个相等和.
sum(diag(M)) =
15
一个n阶幻方的特有的和值计算公式为:
sum(1:n^2)/n
易知:当n=3时,其特有的和为15.
prod函数:
对于向量返回的是其所有元素的积;
a=prod([1,2,3,4])
a=24;
对于矩阵返回的是按列向量的所有元素的积,然后组成一行向量;
b=magic(3)
b=
8 1 6
3 5 7
4 9 2
c=prod(b)
c=
96 45 84
matlab随笔的更多相关文章
- Matlab随笔之矩阵入门知识
原文:Matlab随笔之矩阵入门知识 直接输入法创建矩阵 – 矩阵的所有元素必须放在方括号“[ ]”内: – 矩阵列元素之间必须用逗号“,”或空格隔开,每行必须用“;”隔开 – 矩阵元素可以是任何不含 ...
- Matlab随笔之画图函数总结
原文:Matlab随笔之画图函数总结 MATLAB函数画图 MATLAB不但擅长於矩阵相关的数值运算,也适合用在各种科学目视表示(Scientific visualization).本节将介绍MATL ...
- Matlab随笔之线性规划
原文:Matlab随笔之线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为:min xs.t. ...
- Matlab随笔之指派问题的整数规划
原文:Matlab随笔之指派问题的整数规划 注:除了指派问题外,一般的整数规划问题无法直接利用Matlab函数,必须Matlab编程实现分支定界法和割平面解法. 常用Lingo等专用软件求解整数规划问 ...
- Matlab随笔之分段线性函数化为线性规划
原文:Matlab随笔之分段线性函数化为线性规划 eg: 10x, 0<=x<=500 c(x)=1000+8x, 500<=x<=1000 300 ...
- Matlab随笔之求解线性方程
原文:Matlab随笔之求解线性方程 理论知识补充: %矩阵除分为矩阵右除和矩阵左除. %矩阵右除的运算符号为“/”,设A,B为两个矩阵,则“A/B”是指方程X*B=A的解矩阵X. %矩阵A和B的列数 ...
- Matlab随笔之插值与拟合(上)
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...
- Matlab随笔之插值与拟合(下)
原文:Matlab随笔之插值与拟合(下) 1.二维插值之插值节点为网格节点 已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增.求(x,y)处的插值z. Matl ...
- Matlab随笔之判别分析
原文:Matlab随笔之判别分析 从概率论角度,判别分析是根据所给样本数据,对所给的未分类数据进行分类. 如下表,已知有t个样本数据,每个数据关于n个量化特征有一个值,又已知该样本数据的分类,据此,求 ...
- matlab随笔(二)
circshift 两种形式 :第一种Y = circshift(A,K)就不用说了,将A中的元素向右移动K个位置. 需要注意的是第二种形式:Y = circshift(A,K,dim),这种形式不好 ...
随机推荐
- web服务器nginx和apache的对比分析
今天准备较详细的对比一下apache httpd与nginx两个web服务器的异同点.优缺点.由于我并不是做web开发的,所以有什么理解错误还请指出,想要了解它们是因为工作中有时候会用到它, ...
- tensorflow四维tensor的形状以及函数tf.argmax( )的笔记
关于tensorflow里多维数组(主要是四维)的组织形式之前一直没弄懂,最近遇到相关问题,算是搞清楚了一些东西,特别记下来,免得自己又遗忘了. 三维形式能很简单的脑补出来三维的形状,不再赘述. 之前 ...
- 实验一:使用ADO.NET方式读数据
第一步:创建Asp.net应用程序 在VS中,点击文件->新建->项目,按如图方式选择并输入: 第二步:新建产品浏览网页窗体Listing.aspx: 在项目SportsStoreEx上点 ...
- python中的文本操作
python如何进行文本操作 1.能调用方法的一定是对象,比如数值.字符串.列表.元组.字典,甚至文件也是对象,Python中一切皆为对象. str1 = 'hello' str2 = 'world' ...
- redhat6下安装centos的yum源
因为redhat中的yum是收费的,未注册时不允许使用的,下面是挂载光盘后的情况,未挂载是没有yum命令.但是下面即便挂载了也是需要验证的 [root@localhost /]# yum instal ...
- Shell记录-Shell命令(其他)
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器. .命令格式 top [参数] Shell 2.命令功能 显示当前系统正在执行的 ...
- 【官方文档】Nginx负载均衡学习笔记(二)负载均衡基本概念介绍
简介 负载均衡(Server Load Balancer)是将访问流量根据转发策略分发到后端多台 ECS 的流量分发控制服务.负载均衡可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应 ...
- HDU 1994 利息计算 数学题
解题报告:算利息的,不过一开始格式控制符里面少写了一个%lf,一直没看到,愣是没找到错误,唉! #include<cstdio> int main() { int T; scanf(&qu ...
- EOJ Monthly 2019.2 (based on February Selection) F.方差
题目链接: https://acm.ecnu.edu.cn/contest/140/problem/F/ 题目: 思路: 因为方差是用来评估数据的离散程度的,因此最优的m个数一定是排序后连续的,所以我 ...
- linux下lz4解压缩遇到的那些事儿
一.Debian系列:Debian.Ubuntu等1.1 kali下修改apt-get源: vim /etc/apt/sources.list deb http://mirrors.ust ...