互不侵犯_状压$dp$
如果有想学习状压\(dp\)的童鞋,请光临博客状压\(dp\)初学
互不侵犯
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入输出格式
输入格式:
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式:
所得的方案数
输入输出样例
输入样例#1:
3 2
输出样例#1:
16
这道题是状压\(dp\)入门题的第二题,也就是说,不算很难。本蒟蒻做了一个小时
言归正传
我们设\(dp\)方程\(dp[i][j][k]\)表示第\(i\)行第\(j\)种状态\(k\)个国王,然后转移方程\(dp[i][j][k]+=dp[i-1][o][k-sum[j]]\)
那么我们怎么判断他们都互相不在攻击范围之内呢?那肯定就是一系列的位运算了。下面就不多说,代码写的很清楚了。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
int n,k;
long long dp[10][5000][1000],state[5000],tot,sum[5000];
void work_1(int he,int s,int node) {
long long p = 1<<n;
for(int i=0;i<p;i++)
if(!(i&(i<<1))){
state[++tot]=i;
sum[tot]=__builtin_popcount(i);
}
}
int main() {
scanf("%d%d",&n,&k);
work_1(0,0,0);
for(int i=1; i<=tot; i++)
dp[1][i][sum[i]]=1;
for(int i=2; i<=n; i++)
for(int j=1; j<=tot; j++)
for(int o=1; o<=tot; o++) {
if(state[j]&state[o]) continue;
if((state[j]<<1)&state[o])continue;
if(state[j]&(state[o]<<1))continue;
for(int s=sum[j];s<=k;s++)dp[i][j][s]+=dp[i-1][o][s-sum[j]];
}
long long ans=0;
for(int i=1; i<=tot; i++)
ans+=dp[n][i][k];
printf("%lld",ans);
}
互不侵犯_状压$dp$的更多相关文章
- 互不侵犯king (状压dp)
互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP
经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...
- [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...
- BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP
[题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...
- bzoj1087互不侵犯King——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1087 水题... 然而犯了两个致命小错误,调了好半天...详见注释. 代码如下: #incl ...
- BZOJ-1087 互不侵犯King 状压DP+DFS预处理
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...
- bzoj1087 互不侵犯King 状压dp+bitset
题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...
- BZOJ_1076_[SCOI2008]奖励关_状压DP
BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...
随机推荐
- 【VC++游戏开发】智力游戏——鸡蛋里挑骨头(仿扫雷)
在我学习游戏开发的过程中,遇到的最大的麻烦就是不知道一个游戏的完整实现过程,代码倒是其次. 这里,总结一下我做过的游戏.主要是梳理整每一个步骤. 先看下终于的效果 第1步,准备素材图片 包含鸡蛋.骨头 ...
- javascript 获取指定范围随机数
<script type="text/javascript"> function GetRandomNum(Min,Max){ var Range = Max - Mi ...
- Codeforces Round #252 (Div. 2)-C,D
C题就是一个简单的模拟.首先给每一个人两个.然后把剩下的都给一个人就好了. 给的时候蛇形给. #include<stdio.h> #include<string.h> #inc ...
- POJ 1496 POJ 1850 组合计数
Code Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8256 Accepted: 3906 Description Tran ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
- Oracle 数据泵使用详解--精华版
数据泵使用EXPDP和IMPDP时应该注意的事项: EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用. EXPDP和IMPDP是服务端的工具程序,他们只能在ORACLE服务端 ...
- _itoa进制转换
#define _CRT_SECURE_NO_WARNINGS #include <stdlib.h> #include <stdio.h> void main() { int ...
- C#如何生成一个随机种子for Random?
就这么写: Random rand = new Random((int)DateTime.Now.Ticks); 或者这么写: Random rand = new Random(new Guid(). ...
- android adb command
一.adb启动activity: $ adb shell$ am start -n {包(package)名}/{包名}.{活动(activity)名称} 如:启动浏览器 # am start -n ...
- MyBatis数据持久化(二)建立数据库会话
上篇文章中介绍了我们使用mybatis前的准备工作,并在程序中通过jdbc与mysql数据库成功建立连接,接下来介绍如何使用mybatis与数据库建立会话.我们需要以下几个步骤: 1.在build p ...