【链接】http://acm.hdu.edu.cn/showproblem.php?pid=6165


【题意】


一张有向图,n个点,m条边,保证没有重边和自环。询问任意两个点能否满足任何一方能够到达另外一方。

【题解】


用Tarjan算法,先把有向图的强连通分量缩成一个点,缩完点之后,剩下的就是一张有向无环图了.
对其进行拓扑排序.一定要唯一的拓扑排序才能够满足题目的要求.
也即,为一条链的时候.
一旦某个时刻做拓扑排序的队列大小大于1就输出无解

【错的次数】


0

【反思】


在这了写反思

【代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e3; vector <int> G[N+10],g[N+10];
int n,m,tot = 0,top = 0,dfn[N+10],low[N+10],z[N+10],totn,du[N+10],in[N+10];
int bh[N+10];
queue <int> dl; void dfs(int x){
    dfn[x] = low[x] = ++ tot;
    z[++top] = x;
    in[x] = 1;
    int len = G[x].size();
    rep1(i,0,len-1){
        int y = G[x][i];
        if (!dfn[y]){
            dfs(y);
            low[x] = min(low[x],low[y]);
        }else
        if (in[y] && dfn[y]<low[x]){
            low[x] = dfn[y];
        }
    }
    if (low[x]==dfn[x]){
        int v = 0;
        totn++;
        while (v!=x){
            v = z[top];
            in[v] = 0;
            bh[v] = totn;
            top--;
        }
    }
} bool ju(){
    return ((int) dl.size()) > 1;
} bool ok(){
    while (!dl.empty()) dl.pop();
    rep1(i,1,n)
        if (du[i]==0)
            dl.push(i);
    while (!dl.empty()){
        if (ju()) return false;
        int x = dl.front();
        dl.pop();
        int len = g[x].size();
        rep1(i,0,len-1){
            int y = g[x][i];
            du[y]--;
            if (du[y]==0){
                dl.push(y);
            }
        }
    }
    return true;
} int main(){
    //Open();
    //Close();
    int T;
    ri(T);
    while (T--){
        ms(dfn,0);
        ms(du,0);
        ms(in,0);
        tot = 0,totn = 0;
        ri(n),ri(m);
        rep1(i,1,n) G[i].clear(),g[i].clear();
        rep1(i,1,m){
            int x,y;
            ri(x),ri(y);
            G[x].pb(y);
        }         rep1(i,1,n)
            if (dfn[i]==0)
                dfs(i);         rep1(i,1,n){
            int len = G[i].size();
            int xx = bh[i];
            rep1(j,0,len-1){
                int y = G[i][j];
                int yy = bh[y];
                if (xx!=yy){
                    g[xx].pb(yy);
                    du[yy]++;
                }
            }
        }
        n = totn;         if (!ok())
            puts("Light my fire!");
        else
            puts("I love you my love and our love save us!");
    }     return 0;
}

【2017 Multi-University Training Contest - Team 9】FFF at Valentine的更多相关文章

  1. 【2017 Multi-University Training Contest - Team 2】TrickGCD

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6053 [Description] 给你一个b数组,让你求一个a数组: 要求,该数组的每一位都小于等 ...

  2. 【2017 Multi-University Training Contest - Team 2】Maximum Sequence

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6047 [Description] 给你一个数列a和一个数列b; 只告诉你a的前n项各是什么; 然后 ...

  3. 【2017 Multi-University Training Contest - Team 2】 Regular polygon

    [Link]: [Description] 给你n个点整数点; 问你这n个点,能够组成多少个正多边形 [Solution] 整点只能构成正四边形. 则先把所有的边预处理出来; 枚举每某两条边为对角线的 ...

  4. 【2017 Multi-University Training Contest - Team 2】 Is Derek lying?

    [Link]: [Description] 两个人都做了完全一样的n道选择题,每道题都只有'A','B','C' 三个选项,,每道题答对的话得1分,答错不得分也不扣分,告诉你两个人全部n道题各自选的是 ...

  5. 【2017 Multi-University Training Contest - Team 5】Rikka with Competition

    [Link]: [Description] [Solution] 把所有人的能力从大到小排; 能力最大的肯定可能拿冠军; 然后一个一个地往后扫描; 一旦出现a[i-1]-a[i]>k; 则说明从 ...

  6. 【2017 Multi-University Training Contest - Team 5】Rikka with Subset

    [Link]: [Description] 给你a数组的n个数的所有2^n个子集的2^n个子集元素的和; 子集元素的和最大为m; 告诉你各个子集元素的和出现的次数; 如 1 2 则0出现1次,1出现1 ...

  7. 【2017 Multi-University Training Contest - Team 5】Rikka with Graph

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6090 [Description] 给你n个点; 让你在这n个点上最多连m条无向边; 使得 ∑ni= ...

  8. 【2017 Multi-University Training Contest - Team 4】Time To Get Up

    [Link]: [Description] [Solution] 把每个数字长什么样存到数组里就好;傻逼题. (直接输入每一行是什么样子更快,不要一个字符一个字符地输入) [NumberOf WA] ...

  9. 【2017 Multi-University Training Contest - Team 4】Counting Divisors

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...

随机推荐

  1. 在cmd命令行中弹出Windows对话框(使用mshta.exe命令)

    有时候用bat写一些小脚本最后会弹出对话框提示操作成功,可以用mshta.exe来实现,它是Windows系统的相关程序,用来执行.HTA文件,一般计算机上面都有这个程序,实现如下: mshta vb ...

  2. Firefox访问https的网站,一直提示不安全

    http://mozilla.com.cn/thread-374897-1-1.html 要激活此功能步骤如下: 在地址栏键入"about:config" 点击“我了解此风险” 在 ...

  3. Aizu - 2555 Everlasting Zero 模拟

    Aizu - 2555 Everlasting Zero 题意:学习技能,每个技能有不同的要求,问能否学习全部特殊技能 思路:枚举每两个技能,得到他们的先后学习关系,如果两个都不能先学的话就是No了, ...

  4. 商业模式(三):P2P网贷平台,毛利润测算

    之前谈到P2P网贷平台,主要的收入就是"息差".        一直以来,想详细写点P2P平台的收益到底如何的,奈何自己感觉收入上的点不算多,对财务这种核心机密了解的也不多,一直没 ...

  5. i2c tools 使用

    1.查询罗列出I2C的控制器总线数目 # i2cdetect -l i2c-0 i2c OMAP I2C adapter I2C adapter i2c-1 i2c OMAP I2C adapter ...

  6. [Python] Finding the most common elements in an iterable

    >>> import collections >>> # Tally occurrences of words in a list >>> cnt ...

  7. poj Transferring Sylla(怎样高速的推断一个图是否是3—连通图,求割点,割边)

    Transferring Sylla 首先.什么是k连通图? k连通图就是指至少去掉k个点使之不连通的图. 题目: 题目描写叙述的非常裸.就是给你一张图要求你推断这图是否是3-连通图. 算法分析: / ...

  8. LeetCode102 Binary Tree Level Order Traversal Java

    题目: Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to ri ...

  9. uva103 - Stacking Boxes(DAG)

    题目:uva103 - Stacking Boxes(DAG) 题目大意:给出N个boxes, 而且给出这些箱子的维度.要求找一个最长的序列.可以使得以下的箱子一定可以有个维度序列大于上面的那个箱子的 ...

  10. Android图像处理之冰冻效果

    原图                                                                          效果图 代码: package com.colo ...