the steps that may be taken to solve a feature selection problem:特征选择的步骤
參考:JMLR的paper《an introduction to variable and feature selection》
we summarize the steps that may be taken to solve a feature selection problem in a check list:
1. Do you have domain knowledge?
If yes, construct a better set of “ad hoc” features.
2. Are your features commensurate(能够同单位度量的)?
If no, consider normalizing them.
3. Do you suspect interdependence of features? If yes, expand your feature set by constructing conjunctive features or products of features(通过构建联合特征<应该是多个variables当做一个feature>或高次特征。扩展您的功能集), as much as your computer resources
allow you(see example of use in Section 4.4).
4. Do you need to prune(裁剪) the input variables (e.g. for cost, speed or data understanding reasons)? If no, construct disjunctive features or weighted sums of features(构建析取特征<应该是一个variables当做一个feature>或加权和特征) (e.g. by clustering or matrix factorization, see
Section 5).
5. Do you need to assess features individually(单独评估每一个feature) (e.g. to understand their influence on the system or because their number is so large that you need to do a first filtering)? If yes, use a variable ranking method (Section 2 and Section 7.2); else,
do it anyway to get baseline results.
6. Do you need a predictor? If no, stop.
7. Do you suspect your data is “dirty” (has a few meaningless input patterns and/or noisy outputs or wrong class labels)? If yes, detect the outlier examples using the top ranking variables obtained in step 5 as representation; check and/or discard them(注意:这里的them是example的意思,不是feature。
。
。).
8. Do you know what to try first? If no, use a linear predictor. Use a forward selection method(Section 4.2) with the “probe” method as a stopping criterion (Section 6) or use the L0-norm embedded
method (Section 4.3). For comparison, following the ranking of step 5, construct a sequence of predictors of same nature using increasing subsets of features. Can you match or improve performance with a smaller subset?
If yes, try a non-linear predictor with
that subset.
9. Do you have new ideas, time, computational resources, and enough examples? If yes, compare several feature selection methods, including your new idea, correlation coefficients, backward selection and embedded methods (Section 4). Use linear and non-linear
predictors. Select the best approach with model selection (Section 6).
10. Do you want a stable solution (to improve performance and/or understanding)? If yes, sub-sample your data and redo your analysis for several “bootstraps” (Section 7.1)
Section 2:describing
filters that select variables by ranking them with correlation coefficients.(经常使用的标准有皮尔逊相关系数、互信息等)
Section 3:Limitations of such approaches(filters) are illustrated by a set of constructed examples. (通过以上标准每次筛选一个“最好的”variable是有局限的,由于variables的组合往往能够比一个variable效果好。即使是看起来无用的variable。怎样和实用的variables结合。或者几个无用的variables结合,都能够provide
a significant performance improvement)
Section 4:Subset selection methods are then introduced. These include wrapper methods that assess subsets
of variables according to their usefulness to a given predictor(就是很easy的逐步添加或者候选消除:http://blog.csdn.net/mmc2015/article/details/47426437). We show how some
embedded methods implement
the same idea, but proceed more efficiently by directly optimizing a two-part objective function with
a goodness-of-fit term and a penalty for a large number of variables(就是所谓的L0-norm、L1-norm等).
Section 5:We then turn to the problem of feature construction, whose goals include increasing the predictor performance and building more compact
feature subsets. All of the previous steps benefit from reliably assessing the statistical significance of the relevance of features. (常见的方法有:聚类,本质思想是。将多个相似的variables用他们的聚类中心取代,最经常使用的是k-mean和层次聚类;矩阵分解法,本质思想是对输入的variables进行线性转换,如PCA/SVD/LDA等;非线性变换,kernel方法。
。。)
Section 6:We briefly review model selection methods and statistical tests used to that effect.
Section 7:Finally, we conclude the paper with a discussion section in which we go over more advanced issues.
we recommend using a linear predictor of your choice (e.g. a linear SVM) and select variables in two alternate ways: (1) with a variable ranking method using a correlation coefficient or mutual information; (2) with a nested
subset selection method performing forward or backward selection or with multiplicative updates
the steps that may be taken to solve a feature selection problem:特征选择的步骤的更多相关文章
- Solve one floodlight install problem
参考: Floodlight安装 SDNLAB Floodlight官网 Installation Guide 问题: 在follow安装教程安装Floodlight的过程中,ant编译时出现了: [ ...
- [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem
Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)
6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...
- 3 Steps(二分图)
C - 3 Steps Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Rng has a ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- Deep Learning in a Nutshell: History and Training
Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...
- (转)Let’s make a DQN 系列
Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...
- Common Pitfalls In Machine Learning Projects
Common Pitfalls In Machine Learning Projects In a recent presentation, Ben Hamner described the comm ...
随机推荐
- PHP读取txt文件到数据库
<?PHP$txt=$C->SITE_URL.'images/my.txt';$row = file($txt); //读出文件中内容到一个数组当中 $num=0;//统计表中的记录数 f ...
- qqwry - 纯真ip库的golang服务
qqwry 纯真 IP 库的一个服务.通过http提供一个ip地址归属地查询支持 软件介绍 我们大家做网站的时候,都会需要将用户的IP地址转换为归属地址功能,而之前的作法大都是从硬盘的数据文件中读取, ...
- Android学习笔记(23):列表项的容器—AdapterView的子类们
AdapterView的子类的子类ListView.GridView.Spinner.Gallery.AdapterViewFlipper和StackView都是作为容器使用,Adapter负责提供各 ...
- 深入浅出WPF 第一部分(3)
3.2.3 属性元素 <Grid HorizontalAlignment="Center" VerticalAlignment="Center"> ...
- crontab FAQ
1.crontab变量问题 crontab中的脚本须要引入系统变量才干找到,否则crontab中的命令找不到系统变量,或者都写绝对路径. 2.1分钟运行一次 */1 * * * * /etc/keep ...
- Anders Hejlsberg 和 Erich Gamma
Anders Hejlsberg 和 Erich Gamma 大概半年前,我写了一篇名叫<有点软文>的文章,深情并茂地告诉大家,我司其实隐藏着很多牛人巨擘.有些人是身怀屠龙技,但是大家不认 ...
- 浏览器加载渲染HTML、DOM、CSS、 JAVASCRIPT、IMAGE、FLASH、IFRAME、SRC属性等资源的顺序总结
页面响应加载的顺序: 1.域名解析->加载html->加载js和css->加载图片等其他信息 DOM详细的步骤如下: 解析HTML结构. 加载外部脚本和样式表文件. 解析并执行脚 ...
- vue 点击事件阻止冒泡 用stop
1.使用vue阻止子级元素的click事件冒泡,很简单,用stop.eg: @click.stop='xxx'
- WinForm无边框窗体移动方法
C#WinForm无边框窗体移动方法.模仿鼠标单击标题栏移动窗体位置 这里介绍俩种办法 方法一:直接通过修改窗体位置从而达到移动窗体的效果 方法二:直接伪装发送单击任务栏消息,让应用程序误以为单击任务 ...
- 小米开源文件管理器MiCodeFileExplorer-源码研究(9)-入口分析
AndroidManifest.xml是Android应用程序最重要的配置文件. 入口文件和intent-filter <application android:icon="@draw ...