參考:JMLR的paper《an introduction to variable and feature selection》

we summarize the steps that may be taken to solve a feature selection problem in a check list:

1. Do you have domain knowledge?

If yes, construct a better set of “ad hoc” features.

2. Are your features commensurate(能够同单位度量的)?

If no, consider normalizing them.

3. Do you suspect interdependence of features? If yes, expand your feature set by constructing conjunctive features or products of features(通过构建联合特征<应该是多个variables当做一个feature>或高次特征。扩展您的功能集), as much as your computer resources
allow you(see example of use in Section 4.4).

4. Do you need to prune(裁剪) the input variables (e.g. for cost, speed or data understanding reasons)? If no, construct disjunctive features or weighted sums of features(构建析取特征<应该是一个variables当做一个feature>或加权和特征) (e.g. by clustering or matrix factorization, see
Section 5).

5. Do you need to assess features individually(单独评估每一个feature) (e.g. to understand their influence on the system or because their number is so large that you need to do a first filtering)? If yes, use a variable ranking method (Section 2 and Section 7.2); else,
do it anyway to get baseline results.

6. Do you need a predictor? If no, stop.

7. Do you suspect your data is “dirty” (has a few meaningless input patterns and/or noisy outputs or wrong class labels)? If yes, detect the outlier examples using the top ranking variables obtained in step 5 as representation; check and/or discard them(注意:这里的them是example的意思,不是feature。

。).

8. Do you know what to try first? If no, use a linear predictor. Use a forward selection method(Section 4.2) with the “probe” method as a stopping criterion (Section 6) or use the L0-norm embedded
method (Section 4.3). For comparison, following the ranking of step 5, construct a sequence of predictors of same nature using increasing subsets of features. Can you match or improve performance with a smaller subset?

If yes, try a non-linear predictor with
that subset.

9. Do you have new ideas, time, computational resources, and enough examples? If yes, compare several feature selection methods, including your new idea, correlation coefficients, backward selection and embedded methods (Section 4). Use linear and non-linear
predictors. Select the best approach with model selection (Section 6).

10. Do you want a stable solution (to improve performance and/or understanding)? If yes, sub-sample your data and redo your analysis for several “bootstraps” (Section 7.1)

Section 2:describing
filters that select variables by ranking them with correlation coefficients.(经常使用的标准有皮尔逊相关系数、互信息等)

Section 3:Limitations of such approaches(filters) are illustrated by a set of constructed examples. (通过以上标准每次筛选一个“最好的”variable是有局限的,由于variables的组合往往能够比一个variable效果好。即使是看起来无用的variable。怎样和实用的variables结合。或者几个无用的variables结合,都能够provide
a significant performance improvement)

Section 4:Subset selection methods are then introduced. These include wrapper methods that assess subsets
of variables according to their usefulness to a given predictor(就是很easy的逐步添加或者候选消除:http://blog.csdn.net/mmc2015/article/details/47426437). We show how some
embedded methods implement

the same idea, but proceed more efficiently by directly optimizing a two-part objective function with

a goodness-of-fit term and a penalty for a large number of variables(就是所谓的L0-norm、L1-norm等).

Section 5:We then turn to the problem of feature construction, whose goals include increasing the predictor performance and building more compact
feature subsets. All of the previous steps benefit from reliably assessing the statistical significance of the relevance of features. (常见的方法有:聚类,本质思想是。将多个相似的variables用他们的聚类中心取代,最经常使用的是k-mean和层次聚类;矩阵分解法,本质思想是对输入的variables进行线性转换,如PCA/SVD/LDA等;非线性变换,kernel方法。

。。)

Section 6:We briefly review model selection methods and statistical tests used to that effect.

Section 7:Finally, we conclude the paper with a discussion section in which we go over more advanced issues.

we recommend using a linear predictor of your choice (e.g. a linear SVM) and select variables in two alternate ways: (1) with a variable ranking method using a correlation coefficient or mutual information; (2) with a nested
subset selection method performing forward or backward selection or with multiplicative updates

the steps that may be taken to solve a feature selection problem:特征选择的步骤的更多相关文章

  1. Solve one floodlight install problem

    参考: Floodlight安装 SDNLAB Floodlight官网 Installation Guide 问题: 在follow安装教程安装Floodlight的过程中,ant编译时出现了: [ ...

  2. [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

    Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...

  3. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  4. 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

    6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...

  5. 3 Steps(二分图)

    C - 3 Steps Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Rng has a ...

  6. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

  7. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

  8. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  9. Common Pitfalls In Machine Learning Projects

    Common Pitfalls In Machine Learning Projects In a recent presentation, Ben Hamner described the comm ...

随机推荐

  1. Ubuntu 16.04安装mysql (连接)

    1.安装mysql sudo apt-get install mysql-server 注:若出现依赖问题安装失败,先执行以下命令sudo apt-get install -f 2.安装过程中会输入密 ...

  2. 【Henu ACM Round#17 B】USB Flash Drives

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 排序,逆序.贪心选较大的就好. [代码] #include <bits/stdc++.h> #define ll lon ...

  3. 解决spring-boot启动中碰到的问题:Cannot determine embedded database driver class for database type NONE(转)

    问题 如下: 2017-07-16 08:50:57.436  INFO 13524 --- [           main] c.p.p.web.PointshopWebApplication   ...

  4. 【Linux环境编程】获取网卡的实时网速

    在windows以下.我们能够看到360或者是qq安全卫士的"安全球".上面显示实时的网速情况.那么在linux里面怎样获取网卡的实时网速?事实上原理非常easy,读取须要获取网速 ...

  5. tsp问题——遗传算法解决

    TSP问题最简单的求解方法是枚举法. 它的解是多维的.多局部极值的.趋于无穷大的复杂解的空间.搜索空间是n个点的全部排列的集合.大小为(n-1)! .能够形象地把解空间看成是一个无穷大的丘陵地带,各山 ...

  6. 如何分解json值设置到text文本框中

    <td><input type="text" id="name11"></td> //4设置访问成功返回的操作 xhr.on ...

  7. C++对象模型——Inline Functions(第四章)

    4.5 Inline Functions 以下是Point class 的一个加法运算符的可能实现内容: class Point { friend Point operator+(const Poin ...

  8. css选择器和优先级总结

    本文转自http://www.cnblogs.com/zxjwlh/p/6213239.html CSS三大特性—— 继承. 优先级和层叠. 继承:即子类元素继承父类的样式; 优先级:是指不同类别样式 ...

  9. JumpServer 堡垒机 指南

    堡垒机介绍 在一个特定网络环境下,为了保障网络和数据不受外界入侵和破坏,而运用各种技术手段实时收集和监控网络环境中每一个组成部分的系统状态.安全事件.网络活动,以便集中报警.及时处理及审计定责.    ...

  10. C# 爬虫总结

    static void Main(string[] args) { //WebRequest request = WebRequest.Create("http://www.cnblogs. ...