Robert is a famous engineer. One day he was given a task by his boss. The background of the task was the following:



Given a map consisting of square blocks. There were three kinds of blocks: Wall, Grass, and Empty. His boss wanted to place as many robots as possible in the map. Each robot held a laser weapon which could shoot to four directions (north, east, south, west)
simultaneously. A robot had to stay at the block where it was initially placed all the time and to keep firing all the time. The laser beams certainly could pass the grid of Grass, but could not pass the grid of Wall. A robot could only be placed in an Empty
block. Surely the boss would not want to see one robot hurting another. In other words, two robots must not be placed in one line (horizontally or vertically) unless there is a Wall between them.



Now that you are such a smart programmer and one of Robert's best friends, He is asking you to help him solving this problem. That is, given the description of a map, compute the maximum number of robots that can be placed in the map.



Input




The first line contains an integer T (<= 11) which is the number of test cases. 



For each test case, the first line contains two integers m and n (1<= m, n <=50) which are the row and column sizes of the map. Then m lines follow, each contains n characters of '#', '*', or 'o' which represent Wall, Grass, and Empty, respectively.

Output



For each test case, first output the case number in one line, in the format: "Case :id" where id is the test case number, counting from 1. In the second line just output the maximum number of robots that can be placed in that map.

Sample Input

2

4 4

o***

*###

oo#o

***o

4 4

#ooo

o#oo

oo#o

***#

Sample Output

Case :1

3

Case :2

5

题意:机器人能攻击跟它所在同一行跟列的全部东西,仅仅有'o'才干放机器人,'#'表示墙壁,能挡住机器人的攻击(意味着墙壁之间能放机器人),要你求出n*m的矩阵上能放多少机器人

思路:最大独立集。可惜眼下没有不论什么算法能求出最大独立集。

那么我们换一个思路,之前做过POJ3041,能够类似地做这道题,可是本题中的墙壁为我们的标记提供了难度。那么我么能够用xs数组看做X集合(表示每行中的'o'的位置。假设不相容则标记为同一个数),同理做一个列的ys数组!

相应下来。在每个'o'上连接两集合的点形成边,我们发现符合题目的每条边之间不能有公共点,所以就转化为了最小边覆盖的问题,刚好就是最大匹配!

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 55;
const int maxn=2600; int link[maxn][maxn];
int xs[N][N],ys[N][N];
int col[maxn],vis[maxn];
int mx,my; int n,m; int match(int x)
{
int i;
for(i=1;i<=my;i++){
if(link[x][i]&&!vis[i])
{
vis[i]=1;
if(!col[i]||match(col[i]))
{
col[i]=x;
return 1;
}
}
}
return 0;
} char str[N][N]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp","w",stdout);
#endif // ONLINE_JUDGE
int t;
scanf("%d",&t);
int cas=1;
while(t--)
{
int cnt=1;
scanf("%d %d",&n,&m);
memset(xs,0,sizeof(xs));
memset(ys,0,sizeof(ys));
getchar();
for(int i=0;i<n;i++)
{
scanf("%s",str[i]);
for(int j=0;j<m;j++)
{
if(str[i][j]=='o')
{
xs[i][j]=cnt;
} else if(str[i][j]=='#')
cnt++;
}
cnt++;
}
int maxx=cnt;
mx=cnt;
cnt=1;
for(int j=0;j<m;j++)
{
for(int i=0;i<n;i++)
{
if(str[i][j]=='o')
ys[i][j]=cnt;
else if(str[i][j]=='#')
cnt++;
}
cnt++;
}
my=cnt;
memset(link,0,sizeof(link));
memset(col,0,sizeof(col));
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(str[i][j]=='o')
{
link[xs[i][j]][ys[i][j]]=1;
}
}
} int tot=0;
for(int i=1;i<=mx;i++)
{
memset(vis,0,sizeof(vis));
if(match(i))tot++;
}
printf("Case :%d\n",cas++);
printf("%d\n",tot);
}
return 0;
}

ZOJ 1654 Place the Robots(最大匹配)的更多相关文章

  1. ZOJ 1654 - Place the Robots (二分图最大匹配)

    题意:在一个m*n的地图上,有空地,草和墙,其中空地和草能穿透攻击光线,而墙不能.每个机器人能够上下左右攻击,问在地图上最多能放多少个不互相攻击的机器人. 这个题和HDU 1045 -  Fire N ...

  2. ZOJ 1654 Place the Robots(放置机器人)------最大独立集

    Place the Robots http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1654 Time Limit: 5 Sec ...

  3. ZOJ 1654 Place the Robots (二分匹配 )

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 Robert is a famous engineer. One ...

  4. ZOJ 1654 Place the Robots建图思维(分块思想)+二分匹配

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 AC一百道水题,不如AC一道难题来的舒服. 题意:一个n*m地图 ...

  5. ZOJ 1654 Place the Robots

    题目大意: 在空地上放置尽可能多机器人,机器人朝上下左右4个方向发射子弹,子弹能穿过草地,但不能穿过墙, 两个机器人之间的子弹要保证互不干扰,求所能放置的机器人的最大个数 每个机器人所在的位置确定了, ...

  6. [ACM_动态规划] ZOJ 1425 Crossed Matchings(交叉最大匹配 动态规划)

    Description There are two rows of positive integer numbers. We can draw one line segment between any ...

  7. ZOJ 1364 Machine Schedule(二分图最大匹配)

    题意 机器调度问题 有两个机器A,B A有n种工作模式0...n-1 B有m种工作模式0...m-1 然后又k个任务要做 每一个任务能够用A机器的模式i或b机器的模式j来完毕 机器開始都处于模式0 每 ...

  8. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

  9. ZOJ 1654 二分匹配基础题

    题意: 给你一副图, 有草地(*),空地(o)和墙(#),空地上可以放机器人, 机器人向上下左右4个方向开枪(枪不能穿墙),问你在所有机器人都不相互攻击的情况下能放的最多的机器人数. 思路:这是一类经 ...

随机推荐

  1. [Apple开发者帐户帮助]三、创建证书(2)创建开发者ID证书

    您可以使用开发人员帐户或Xcode 创建最多五个开发者ID应用程序证书和最多五个开发人员ID安装程序证书.(要在Xcode中创建开发者ID证书,请转到Xcode帮助中的管理签名证书.) 所需角色:帐户 ...

  2. C# 标准命名规范

    笔者从事开发多年,有这样一种感觉,查看一些开源项目,如Spring.Apache Common等源码是一件赏心悦目的事情,究其原因,无外两点:1)代码质量非常高:2)命名特别规范(这可能跟老外的英语水 ...

  3. Coursera公开课-Machine_learing:编程作业5

    Regularized Linear Regression and Bias/Variance 大多数时候,我们使用机器学习方法得到的结果都不是特别理想,常见 欠拟合 和 过拟合 问题.通过一些变量画 ...

  4. springmvc 中将MultipartFile转为file,springboot 注入CommonsMultipartResolver

    第一种方法: MultipartFile file = xxx; CommonsMultipartFile cf= (CommonsMultipartFile)file; DiskFileItem f ...

  5. bootstrap-paginator基于bootstrap的分页插件

    bootstrap-paginator基于bootstrap的分页插件 GitHub 官网地址:https://github.com/lyonlai/bootstrap-paginator 步骤 引包 ...

  6. Activity生命周期(待整理)

    1. 定义 有一些方法共同定义生命周期,如下图示:(图片来自于官网文档) 2. onStart()——在Activity即将对用户可见之前调用 (1)Activity启动动画.二维动画在onStart ...

  7. Android 存储路径选择

    Android能用来存储的地方有两个,一个是手机内置的存储空间,一个是外置的SD卡,内置的存储空间一般比较小,所以应用的缓存建议存储在外置的SD卡中. 在Android系统中如何获得存储的路径呢? p ...

  8. CentOS7.5 AndroidStudio Debug报错:insufficient permissions for device

    / ::: Launching instantapp $ adb push /home/vevi/AndroidStudioProjects/WeChatGod/app/build/outputs/a ...

  9. openMSP430之Custom linker script

    The use of the -mmcu switch is of course NOT mandatory. It is simply a convenient way to use the pre ...

  10. An interesting scroll background------ActionScript3.0

    package { /* *@ ClassName : package::backGround *@ INTRO : the continuously scroll background *@ Aut ...