hdu5389 Zero Escape DP+滚动数组 多校联合第八场
Zero Escape
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 56 Accepted Submission(s): 18
) and developed by Chunsoft.
Stilwell is enjoying the first chapter of this series, and in this chapter digital root is an important factor.
This is the definition of digital root on Wikipedia:
The digital root of a non-negative integer is the single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number
is reached.
For example, the digital root of 65536
is 7,
because 6+5+5+3+6=25
and 2+5=7.
In the game, every player has a special identifier. Maybe two players have the same identifier, but they are different players. If a group of players want to get into a door numberedX(1≤X≤9),
the digital root of their identifier sum must be X.
For example, players {1,2,6}
can get into the door 9,
but players {2,3,3}
can't.
There is two doors, numbered A
and B.
Maybe A=B,
but they are two different door.
And there is n
players, everyone must get into one of these two doors. Some players will get into the doorA,
and others will get into the door B.
For example:
players are {1,2,6},A=9,B=1
There is only one way to distribute the players: all players get into the door
9.
Because there is no player to get into the door 1,
the digital root limit of this door will be ignored.
Given the identifier of every player, please calculate how many kinds of methods are there,mod 258280327.
T,
the number of test cases.
For each test case, the first line contains three integers
n,A
and B.
Next line contains n
integers idi,
describing the identifier of every player.
T≤100,n≤105,∑n≤106,1≤A,B,idi≤9
players can get into these two doors.
4
3 9 1
1 2 6
3 9 1
2 3 3
5 2 3
1 1 1 1 1
9 9 9
1 2 3 4 5 6 7 8 9
1
0
10
60
把N个数分成两组。一组加起来是A,一组加起来是B,1<=A,B<=9,也能够全分到同一组。当中加是依照他给的规则加。就是一位一位加。超过一位数了再拆分成一位一位加。
由于把N个数全加起来再依照那个规则处理和两个两个加是一样的。用dp[i][j][k]表示前i个数分两组。第一组和为j,第二组和为k有多少种,直接依据a[i]和dp[i-1]的情况递推即可了(假设当前和为j,这一位是a[i],若j>a[i],上一位要取的是j-a[i],否则上一位是9-(a[i]-j),尽管和一般加法不一样,但也差不了多少)。这里N非常大,用滚动数组。但我一開始交上去超时,然后发现j和k不须要两重循环。由于前i个数的和是确定的,那么假设j确定了。k也确定了,所以能够先预处理前缀和(按他这样的加法规则的和)。每次依据j直接算出k。这里特别要注意j,k等于0的情况,进行特殊处理。
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#define INF 0x3f3f3f3f
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; typedef long long LL; const int MAXN=100010;
const LL MOD= 258280327; int T,N,A,B;
int a[MAXN],sum[MAXN];
LL dp[2][10][10]; int cal(int i,int j){
if(j>i) return j-i;
return 9-(i-j);
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&N,&A,&B);
memset(dp,0,sizeof(dp));
sum[0]=0;
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
if(sum[i]>=10) sum[i]-=9;
}
int cur=0;
dp[cur][a[1]][0]=1;
dp[cur][0][a[1]]=1;
for(int i=2;i<=N;i++){
cur=!cur;
memset(dp[cur],0,sizeof(dp[cur]));
for(int j=0;j<=9;j++){
int k;
if(j==0) k=sum[i];
else k=cal(j,sum[i]);
if(j==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][0][k])%MOD;
if(k==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][0])%MOD;
if(j>0){
int t=cal(a[i],j);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][t][k])%MOD;
}
if(k>0){
int t=cal(a[i],k);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][t])%MOD;
}
//j==sum[i]时k可能为0
if(j==sum[i]){
k=0;
if(j==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][0][k])%MOD;
if(k==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][0])%MOD;
if(j>0){
int t=cal(a[i],j);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][t][k])%MOD;
}
if(k>0){
int t=cal(a[i],k);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][t])%MOD;
}
}
}
}
LL ans=(dp[cur][A][0]+dp[cur][0][B]+dp[cur][A][B])%MOD;
printf("%I64d\n",ans);
}
return 0;
}
hdu5389 Zero Escape DP+滚动数组 多校联合第八场的更多相关文章
- HDU 5389 Zero Escape(DP + 滚动数组)
Zero Escape Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) To ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- HDU 5119 Happy Matt Friends (背包DP + 滚动数组)
题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...
- USACO 2009 Open Grazing2 /// DP+滚动数组oj26223
题目大意: 输入n,s:n头牛 s个栅栏 输入n头牛的初始位置 改变他们的位置,满足 1.第一头与最后一头的距离尽量大 2.相邻两头牛之间的距离尽量满足 d=(s-1)/(n-1),偏差不超过1 3. ...
- hdu5379||2015多校联合第7场1011 树形统计
pid=5379">http://acm.hdu.edu.cn/showproblem.php? pid=5379 Problem Description Little sun is ...
- BZOJ-1925 地精部落 烧脑DP+滚动数组
1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1053 Solved: 633 [Submit][Status ...
- Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)
题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
随机推荐
- oen /var/run/nginx.pid failed
nginx: [error] open() "/var/run/nginx.pid" failed (2: No such file or directory) [root@TES ...
- ReverseEngineerCodeFirst 自定义模板
1.在你要生成的项目里面在根目录下面添加CodeTemplates文件夹,并在该文件夹下面创建子文件夹ReverseEngineerCodeFirst 2.在ReverseEngineerCodeFi ...
- SQLServer2008 使用BCP导入导出表数据
--先开启cmdshell EXEC sp_configure 'show advanced options', 1 GO RECONFIGURE GO EXEC sp_configure 'xp_c ...
- 【转载】JavaScript中同名标识符优先级-Snandy
一,局部变量先使用后声明,不影响外部同名变量 var x = 1; // --> 外部变量x function fn(){ alert(x); // --> undefined 局部变量x ...
- 关于MVC4.0版本以上的RegisterBundles用法
public class BundleConfig { //新建了一个项目文件,打开App_Start下的BundleConfig看看, public static void RegisterBund ...
- MYSQL 45道练习题
学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表(四)所示,数据如表1-2的表(一)~表(四)所示.用S ...
- dubbo之上下文信息
上下文信息 上下文中存放的是当前调用过程中所需的环境信息.所有配置信息都将转换为 URL 的参数,参见 schema 配置参考手册 中的对应URL参数一列. RpcContext 是一个 Thread ...
- redis 主从复制 redis 探索
http://blog.csdn.net/column/details/12804.html
- Apex语言(六)数组
1.数组 数组能保存多个数据,每一个数据称为数组元素,元素的个数称为数组的长度. 数组元素的类型必须相同,元素的类型就是数组的类型. 数组元素在数组中都有一个编号,称为数组下标.下标从0开始编号,通过 ...
- JDK8新特性 -- Function接口: apply,andThen,compose
1 Function<T, R>中的T, R表示接口输入.输出的数据类型. R apply(T t) apply: .例子:func是定义好的Function接口类型的变量,他的输入.输出 ...