hdu5389 Zero Escape DP+滚动数组 多校联合第八场
Zero Escape
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 56 Accepted Submission(s): 18
) and developed by Chunsoft.
Stilwell is enjoying the first chapter of this series, and in this chapter digital root is an important factor.
This is the definition of digital root on Wikipedia:
The digital root of a non-negative integer is the single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number
is reached.
For example, the digital root of 65536
is 7,
because 6+5+5+3+6=25
and 2+5=7.
In the game, every player has a special identifier. Maybe two players have the same identifier, but they are different players. If a group of players want to get into a door numberedX(1≤X≤9),
the digital root of their identifier sum must be X.
For example, players {1,2,6}
can get into the door 9,
but players {2,3,3}
can't.
There is two doors, numbered A
and B.
Maybe A=B,
but they are two different door.
And there is n
players, everyone must get into one of these two doors. Some players will get into the doorA,
and others will get into the door B.
For example:
players are {1,2,6},A=9,B=1
There is only one way to distribute the players: all players get into the door
9.
Because there is no player to get into the door 1,
the digital root limit of this door will be ignored.
Given the identifier of every player, please calculate how many kinds of methods are there,mod 258280327.
T,
the number of test cases.
For each test case, the first line contains three integers
n,A
and B.
Next line contains n
integers idi,
describing the identifier of every player.
T≤100,n≤105,∑n≤106,1≤A,B,idi≤9
players can get into these two doors.
4
3 9 1
1 2 6
3 9 1
2 3 3
5 2 3
1 1 1 1 1
9 9 9
1 2 3 4 5 6 7 8 9
1
0
10
60
把N个数分成两组。一组加起来是A,一组加起来是B,1<=A,B<=9,也能够全分到同一组。当中加是依照他给的规则加。就是一位一位加。超过一位数了再拆分成一位一位加。
由于把N个数全加起来再依照那个规则处理和两个两个加是一样的。用dp[i][j][k]表示前i个数分两组。第一组和为j,第二组和为k有多少种,直接依据a[i]和dp[i-1]的情况递推即可了(假设当前和为j,这一位是a[i],若j>a[i],上一位要取的是j-a[i],否则上一位是9-(a[i]-j),尽管和一般加法不一样,但也差不了多少)。这里N非常大,用滚动数组。但我一開始交上去超时,然后发现j和k不须要两重循环。由于前i个数的和是确定的,那么假设j确定了。k也确定了,所以能够先预处理前缀和(按他这样的加法规则的和)。每次依据j直接算出k。这里特别要注意j,k等于0的情况,进行特殊处理。
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#define INF 0x3f3f3f3f
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; typedef long long LL; const int MAXN=100010;
const LL MOD= 258280327; int T,N,A,B;
int a[MAXN],sum[MAXN];
LL dp[2][10][10]; int cal(int i,int j){
if(j>i) return j-i;
return 9-(i-j);
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&N,&A,&B);
memset(dp,0,sizeof(dp));
sum[0]=0;
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
if(sum[i]>=10) sum[i]-=9;
}
int cur=0;
dp[cur][a[1]][0]=1;
dp[cur][0][a[1]]=1;
for(int i=2;i<=N;i++){
cur=!cur;
memset(dp[cur],0,sizeof(dp[cur]));
for(int j=0;j<=9;j++){
int k;
if(j==0) k=sum[i];
else k=cal(j,sum[i]);
if(j==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][0][k])%MOD;
if(k==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][0])%MOD;
if(j>0){
int t=cal(a[i],j);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][t][k])%MOD;
}
if(k>0){
int t=cal(a[i],k);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][t])%MOD;
}
//j==sum[i]时k可能为0
if(j==sum[i]){
k=0;
if(j==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][0][k])%MOD;
if(k==a[i]) dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][0])%MOD;
if(j>0){
int t=cal(a[i],j);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][t][k])%MOD;
}
if(k>0){
int t=cal(a[i],k);
dp[cur][j][k]=(dp[cur][j][k]+dp[!cur][j][t])%MOD;
}
}
}
}
LL ans=(dp[cur][A][0]+dp[cur][0][B]+dp[cur][A][B])%MOD;
printf("%I64d\n",ans);
}
return 0;
}
hdu5389 Zero Escape DP+滚动数组 多校联合第八场的更多相关文章
- HDU 5389 Zero Escape(DP + 滚动数组)
Zero Escape Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) To ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- HDU 5119 Happy Matt Friends (背包DP + 滚动数组)
题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...
- USACO 2009 Open Grazing2 /// DP+滚动数组oj26223
题目大意: 输入n,s:n头牛 s个栅栏 输入n头牛的初始位置 改变他们的位置,满足 1.第一头与最后一头的距离尽量大 2.相邻两头牛之间的距离尽量满足 d=(s-1)/(n-1),偏差不超过1 3. ...
- hdu5379||2015多校联合第7场1011 树形统计
pid=5379">http://acm.hdu.edu.cn/showproblem.php? pid=5379 Problem Description Little sun is ...
- BZOJ-1925 地精部落 烧脑DP+滚动数组
1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1053 Solved: 633 [Submit][Status ...
- Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)
题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
随机推荐
- Gym - 101208J 2013 ACM-ICPC World Finals J.Pollution Solution 圆与多边形面积交
题面 题意:给你一个半圆,和另一个多边形(可凹可凸),求面积交 题解:直接上板子,因为其实这个多边形不会穿过这个半圆,所以他和圆的交也就是和半圆的交 打的时候队友说凹的不行,不是板题,后面想想,圆与多 ...
- python-day2 切片,格式化输出,函数
1.切片:取元素 格式;变量名[M:N:K] M 表示开始元素索引值, N 表示结束元素索引值(不包含索引值本身) K 表示步长,隔几个切一次 例子:a='hello python' p ...
- springboot踩坑出坑记
4月15到4月17我都在把毕设从eclipse重构到IDEA中,springboot最让我头疼的是它的版本问题,因为每一个版本对应的依赖包都有可能出错,这里分享一下如何成功移植用eclipse写的sp ...
- 【钓起来的tips系列】
一.求n的阶乘: #include<bits/stdc++.h> using namespace std; int n; int jc(int k) { ); )*k; } /*int j ...
- git上
## 建立本地版本库 ## 本地版本库与远程关联 ## 修改文件并提交 ## 创建分支,修改文件合并至master 1. git的由来 linux系统是很多开发者贡献代码不断完善的,linux的创始人 ...
- Spring Boot (19) servlet、filter、listener
servlet.filter.listener,在spring boot中配置方式有两种:一种是以servlet3开始提供的注解方式,另一种是spring的注入方式. servlet注解方式 serv ...
- Spring Boot (3) 热部署devtools
热部署:当发现程序修改时自动启动应用程序. spring boot为开发者提供了一个名为spring-boot-devtools的模块来使sring boot应用支持热部署,提高开发者的开发效率,无需 ...
- 怪异的Ubuntu
怪异的Ubuntu 简单记录ubuntu上出现并且网上不好找到甚至压根找不到解决方案的疑难杂症. lvextend扩展逻辑卷的容量不能被系统检测到 问题发生在Ubuntu 16.04系统上. 逻辑卷/ ...
- asp.net mvc学习入门
MVC是什么? M: Model就是我们获取的网页需要的数据 V: View就是我们的aspx页面,注意这是一个不包含后台代码文件的aspx页面.(其实带有.asp.cs文件也不会有编译错误,但是这样 ...
- Arduino ULN2009驱动步进电机
一.实物图 二.例子代码 注:代码来自老外 http://www.4tronix.co.uk/arduino/Stepper-Motors.php 功能:控制电机正反转 // This Arduino ...