洛谷 P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。
输出格式:
对于每个正整数nn,输出方案总数。
输入输出样例
1
2003
48
思路:1.四重循环。
错因:输出没有换行。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,ans;
int main(){
cin>>t;
while(t--){
cin>>n;
ans=;
for(int ii=;ii*ii<=n;ii++)
for(int j=ii;ii*ii+j*j<=n;j++)
for(int k=j;k*k+j*j+ii*ii<=n;k++){
int num=n-ii*ii-j*j-k*k;
int s=(int)sqrt(num);
if(s*s==num&&k<=s)
ans++;
}
cout<<ans<<endl;
}
}
思路:2.dp可以列出状态转移方程f[i][j]=Σf[i-k*k][j-1];
#include<iostream>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,f[][];
int main(){
f[][]=;
for(int k=;k*k<=;k++)
for(int i=k*k;i<=;i++)
for(int j=;j<=;j++)
f[i][j]+=f[i-k*k][j-];
cin>>t;
while(t--){
cin>>n;
cout<<f[n][]+f[n][]+f[n][]+f[n][]<<endl;
}
}
洛谷 P1586 四方定理的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P3834 卢卡斯定理 题解
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
随机推荐
- PCB SVN 服务端VisualSVN Server与TortoiseSVN
PCB 工程系统SVN源代码招病毒破坏以后,一周时间都没有源代码同步更新了,今天终于将SVN源代码数据恢复并重建SVN服务器,这里将SVN搭建安装过程整理如下 一.服务端SVN安装 1.下载地址:ht ...
- PCB javascript解析钻孔(Excellon)格式实现方法
解析钻孔(Excellon)格式前首先得了解此格式,这样才能更好的解析呀. 一个钻孔里面包含的基本信息如下: 1.单位:公式mm,英制inch 2.省零方式:前省零,后省零 3.坐标方式:绝对坐标,相 ...
- H5 触摸事件
HTML5中新添加了很多事件,但是由于他们的兼容问题不是很理想,应用实战性不是太强,所以在这里基本省略,咱们只分享应用广泛兼容不错的事件,日后随着兼容情况提升以后再陆续添加分享.今天为大家介绍的事件主 ...
- Akka源码分析-深入ActorRef&ActorPath
上一节我们深入讨论了ActorRef等相关的概念及其关系,但ActorRef和ActorPath的关系还需要再加以分析说明.其实还是官网说的比较清楚. “A path in an actor syst ...
- phpStorm更新后配置svn无法使用
phpStorm迎来新的更新,结果之前配置的svn竟然无法使用啦,快捷键一类也没有作用.各种查找解决方案,最后找到解决方案.点击File找到Settings,找到Plugins这个部分,这个部分是管理 ...
- 题解报告:hdu 1142 A Walk Through the Forest
题目链接:acm.hdu.edu.cn/showproblem.php?pid=1142 Problem Description Jimmy experiences a lot of stress a ...
- Mac使用bootcamp安装win8.1出现网卡驱动没有安装问题
问题:没有网络连接 原因:在bootcamp烧的u盘里面其实附带了驱动,只是没有自动安装 解决:D:\BootCamp\Drivers\Broadcom\BroadcomWirelessWin8x64 ...
- Elasticsearch之sense插件安装之后的浏览详解
前提博客是 Elasticsearch之sense插件的安装(图文详解) 立马,可以看到 http://192.168.80.145:5601/app/sense 以后更新
- Xml的读取
using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace WebAp ...
- 这辈子写过的比较有意思的几个sql
递归 with myRecursion as( select * from recursion where id=1 union all select r.* from myRecursion m,r ...