洛谷 P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。
输出格式:
对于每个正整数nn,输出方案总数。
输入输出样例
1
2003
48
思路:1.四重循环。
错因:输出没有换行。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,ans;
int main(){
cin>>t;
while(t--){
cin>>n;
ans=;
for(int ii=;ii*ii<=n;ii++)
for(int j=ii;ii*ii+j*j<=n;j++)
for(int k=j;k*k+j*j+ii*ii<=n;k++){
int num=n-ii*ii-j*j-k*k;
int s=(int)sqrt(num);
if(s*s==num&&k<=s)
ans++;
}
cout<<ans<<endl;
}
}
思路:2.dp可以列出状态转移方程f[i][j]=Σf[i-k*k][j-1];
#include<iostream>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,f[][];
int main(){
f[][]=;
for(int k=;k*k<=;k++)
for(int i=k*k;i<=;i++)
for(int j=;j<=;j++)
f[i][j]+=f[i-k*k][j-];
cin>>t;
while(t--){
cin>>n;
cout<<f[n][]+f[n][]+f[n][]+f[n][]<<endl;
}
}
洛谷 P1586 四方定理的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P3834 卢卡斯定理 题解
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
随机推荐
- idea ssm项目移包报错问题
写完代码之后发现包结构太乱了 想要规划一下 结果报错 这里面的包路径都可以点进去,还是报找不到com.lf.company.entity.Business 后来发现是 在移动前和移动后都存在这个m ...
- centos7离线安装rabbitmq
准备工作 一台centos7的机器 erlang-21.3.8.2 RabbitMQ 3.7.15 socat-1.7.3.2-2.el7.x86_64.rpm 开始安装 登录centos ,把上面的 ...
- 如何解决error LNK2001(转载)
转自:http://www.cnblogs.com/myzhijie/articles/1658545.html 解决外部符号错误:_main,_WinMain@16,__beginthreadex ...
- Leetcode0143--Reorder List 链表重排
[转载请注明]https://www.cnblogs.com/igoslly/p/9351564.html 具体的图示可查看 链接 代码一 /** * Definition for singly-li ...
- 使用Hexo搭建个人博客配置全过程
大致过程分为: 1.搭建Node.js 环境 2. 搭建Git 环境 3.安装配置Hexo 4.GitHub 注册和配置 5. 关联Hexo 与 GitHub Pages 7.Hexo的常用操作 下面 ...
- JS——scroll动画
固定导航栏 1.计算导航栏到顶部的距离值 2.当scrollTop值大于这个距离值就添加定位,当小于距离值后解除定位 注意事项:当导航栏添加定位之后,导航栏就脱离了文档流,也就是不占位了,下面的盒子就 ...
- CSS——盒子
CSS中的盒子具有以下几个种重要的属性: 1.border(边框) :盒子的厚度 2.padding(内边距):盒子内容距离盒子边框的距离 3.margin(外边距):盒子边框与其他的盒子的距离
- cesium的学习
一.学习资料:http://cesiumjs.org/tutorials.html,看完6个教程后对图层加载.控件控制开关.地形数据叠加.模型添加.相机控制.图形绘制有一点了解.这也是cesium的主 ...
- AcDbTable 类
Table 例子学习笔记在这个例子中,ARX向我们展示了ACDBTABLE类的一些基本操作方法,ACDBTABLE类是ACAD2005及其以后的产品,应该是说ACDBDATATABLE的升级产品,Ac ...
- 一个ROS的服务,使机器人向前移动指定距离
源代码有点长,放文末链接里了. 服务描述及代码现在的服务是:请求时携带要前进的距离,然后底盘前进相应距离.代码如下,改动很小: #!/usr/bin/env python import rospyfr ...