题目描述

四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​2​​+4​2​​,当然还有其他的分解方案,25=4^{2}+3^{2}25=4​2​​+3​2​​和25=5^{2}25=5​2​​。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=4​2​​+3​2​​和25=3^{2}+4^{2}25=3​2​​+4​2​​视为一种方案。

输入输出格式

输入格式:

第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。

输出格式:

对于每个正整数nn,输出方案总数。

输入输出样例

输入样例#1:

1
2003
输出样例#1:

48
思路:1.四重循环。
错因:输出没有换行。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,ans;
int main(){
cin>>t;
while(t--){
cin>>n;
ans=;
for(int ii=;ii*ii<=n;ii++)
for(int j=ii;ii*ii+j*j<=n;j++)
for(int k=j;k*k+j*j+ii*ii<=n;k++){
int num=n-ii*ii-j*j-k*k;
int s=(int)sqrt(num);
if(s*s==num&&k<=s)
ans++;
}
cout<<ans<<endl;
}
}

思路:2.dp可以列出状态转移方程f[i][j]=Σf[i-k*k][j-1];

#include<iostream>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int t,n,f[][];
int main(){
f[][]=;
for(int k=;k*k<=;k++)
for(int i=k*k;i<=;i++)
for(int j=;j<=;j++)
f[i][j]+=f[i-k*k][j-];
cin>>t;
while(t--){
cin>>n;
cout<<f[n][]+f[n][]+f[n][]+f[n][]<<endl;
}
}
 

洛谷 P1586 四方定理的更多相关文章

  1. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  2. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  3. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  6. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

随机推荐

  1. PCB 内层负片散热PAD Symbols尺寸更改方法

    如下图这是我们熟悉的内层负片散热PAD Symbols,我们CAM制作时,为了满足PCB工厂生产制作能力,,会优化散热PAD尺寸,让热PAD的尺寸符合制作规范要求,通常我们只关注散热PAD的3个指标即 ...

  2. php使用163邮箱发送邮件

    email.class.php文件 <? class smtp { /* Public Variables */ var $smtp_port; var $time_out; var $host ...

  3. [Swift通天遁地]七、数据与安全-(15)使用单元测试进行代码的性能分析

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  4. golang——常用内建函数

    (1)func len(v Type) int 返回长度,取决于具体类型:字符串返回字节数:channel返回缓存元素的个数: (2)func cap(v Type) int 返回容量,取决于具体类型 ...

  5. JavaScript--innerHTML 属性

    innerHTML 属性用于获取或替换 HTML 元素的内容. 语法: Object.innerHTML 注意: 1.Object是获取的元素对象,如通过document.getElementById ...

  6. Android 签名(5)用命令签名和用android studio,eclipse签名

    1,用命令签名 无论用哪个 IDE 开发,最终只是用了 keytool 和 jarsigner 这两个 Java 工具来完成签名任务(在 jdk 的 bin 目录下).其中 keytool 用来生成 ...

  7. SAS进阶《深入解析SAS》之对多数据集的处理

    SAS进阶<深入解析SAS>之对多数据集的处理 1. 数据集的纵向串接: 数据集的纵向串接指的是,将两个或者多个数据集首尾相连,形成一个新的数据集. 据集的横向合并: 数据集的横向合并,指 ...

  8. fastjson——json工具库

    fastjson alibaba fastjson是阿里巴巴公司开源维护的一个处理json格式数据的java工具库. 功能特性: 数据绑定databind (json string <--> ...

  9. postgresql用sql语句查询表结构

    用到的postgresql系统表 关于postgresql系统表,可以参考PostgreSQL 8.1 中文文档-系统表. pg_class 记录了数据库中的表,索引,序列,视图("关系&q ...

  10. https Full Handshake

    1)加密套件交互: 2)密码交换: 3)身份认证: Full Handshake Initially, client and server "agree upon" null en ...