F - Modular Exponentiation
Problem description
The following problem is well-known: given integers n and m, calculate 2n mod m,
where 2n = 2·2·...·2 (n factors), and x mod y denotes the remainder of division of x by y.
You are asked to solve the "reverse" problem. Given integers n and m, calculate m mod 2n.
Input
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output
Output a single integer — the value of m mod 2n.
Examples
Input
4
42
Output
10
Input
1
58
Output
0
Input
98765432
23456789
Output
23456789
Note
In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.
In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.
解题思路:由于给出的m最大值为108,于是暴力找出2k>108时的最小值k,解得k=27,所以只要n>26,直接输出m(取模一个比自己大的数字,结果为本身),反之直接取模运算,这样就不会发生数据溢出。(位运算是个好东西,长记性了)
AC代码:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,m;
cin>>n>>m;
cout<<(n>?m:m%(<<n))<<endl;
return ;
}
F - Modular Exponentiation的更多相关文章
- 焦作F Modular Production Line 费用流
题目链接 题解:这道题比赛的时候,学弟说是网络流,当时看N这么大,觉得网络流没法做,实际本题通过巧妙的建图,然后离散化. 先说下建图方式,首先每个覆盖区域,只有左右端点,如果我们只用左右端点的话,最多 ...
- ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)
很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化. 建模方式步骤: 1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w; 2.对所有 ...
- 【Hello 2018 A】 Modular Exponentiation
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 当a<b的时候 a%b==a 显然2^n增长很快的. 当2^n>=1e8的时候,直接输出m就可以了 [代码] #incl ...
- RSA算法原理与加密解密 求私钥等价求求模反元素 等价于分解出2个质数 (r*X+1)%[(p-1)(q-1)]=0
Rsapaper.pdf http://people.csail.mit.edu/rivest/Rsapaper.pdf [概述Abstract 1.将字符串按照双方约定的规则转化为小于n的正整数m, ...
- RSA (cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem) RSA is one of the first practical实用性的 public-key cr ...
- Effective Java 第三版——17. 最小化可变性
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- SSL加速卡调研的原因及背景
SSL加速卡调研的原因及背景 SSL加速卡调研的原因及背景 网络信息安全已经成为电子商务和网络信息业发展的一个瓶颈,安全套接层(SSL)协议能较好地解决安全处理问题,而SSL加速器有效地提高了网络安全 ...
- 2018 ACM 网络选拔赛 焦作赛区
A. Magic Mirror #include <cstdio> #include <cstdlib> #include <cmath> #include < ...
- Hello 2018 A,B,C,D
A. Modular Exponentiation time limit per test 1 second memory limit per test 256 megabytes input sta ...
随机推荐
- xadmin站点管理类
9. Xadmin xadmin是Django的第三方扩展,比使用Django的admin站点更强大也更方便. 文档:https://xadmin.readthedocs.io/en/latest/i ...
- DOCKER - 容器抓包
https://help.aliyun.com/knowledge_detail/40564.html?spm=a2c4e.11153940.blogcont272172.10.b09e28a6AOd ...
- EAS之校验检查
先了解一下权限接口类提供的有关权限项检查的方法public boolean hasFunctionPermission(IObjectPK userPK,IObjectPK orgPK,String ...
- pandas操作,按序号取列,按条件筛选,df格式转换等
这几天遇到比较多的dataframe操作,频繁使用,在此整理记录下,方便查找. 1.num为列的数字序号,name=df.columns[num],返回的是column的字符串名字,df[name]= ...
- 10.多shard场景下relevence score可能不准确
主要知识点 多shard场景下relevence score可能不准确的原因 多shard场景下relevence score可能不准确解决方式 一.多shard场景下relevance sc ...
- 远程连接Ubuntu的桌面
参考:http://www.linuxidc.com/Linux/2016-06/132442.htm http://teliute.org/linux/TeUbt/lesson52/lesson52 ...
- CODEVS1281 Xn数列 (矩阵乘法+快速乘)
真是道坑题,数据范围如此大. 首先构造矩阵 [ f[0] , 1] * [ a,0 ] ^n= [ f[n],1 ] [ c,1 ] 注意到m, a, c, x0, n, g<=10^18,所以 ...
- Spring MVC-集成(Integration)-生成XML示例(转载实践)
以下内容翻译自:https://www.tutorialspoint.com/springmvc/springmvc_xml.htm 说明:示例基于Spring MVC 4.1.6. 以下示例说明如何 ...
- Findbug插件静态java代码扫描工具使用
本文转自http://blog.csdn.net/gaofuqi/article/details/22679609 感谢作者 FindBugs 是由马里兰大学提供的一款开源 Java静态代码分析工具. ...
- 你还在苦逼地findViewById吗?使用ButterKnife从此轻松定义控件
前段时间笔者在苦逼地撸代码~最后发现有些复杂的界面在写了一屏幕的findviewbyid~~~另一堆setOnXXXListener~有没有方便一点的方法让我们简单点不用每次都定义一次.find一次, ...