题目链接:https://cn.vjudge.net/problem/LightOJ-1236

题意

给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n

注意数据范围n<=10^14

思路

唯一分解定理

要注意的是条件a<=b,这就是说,在不要求大小关系的情况下

ans包括a<b,a>b和a==b的情形,最终答案就是(ans+1)/2

注意数据范围,求因数时使用1e7的素数即可,剩余的未被分解的数一定是大素数

首先求一下素数加速求因数,其次注意prime*prime<=n是另一优化

提交过程

TLE1 没注意数据范围,用了没有优化的getFactors
WA*n 模版有问题,一直在尝试优化
WA 注意ans=factors[i][0]2+1;
TLE2 第二个prime*prime<=n的优化没做
WA 注意long long范围
AC

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e7+20;
int factors[100][2], fsize, primes[maxn/10], psize;
bool isprime[maxn];
void initPrimes(void){
memset(isprime, true, sizeof(isprime));
isprime[0]=isprime[1]=false;
for (int i=2; i<=maxn; i++){
if(isprime[i]) primes[psize++]=i;
for (int j=0; j<psize && i*primes[j]<=maxn; j++){
isprime[primes[j]*i]=false;
if (i%primes[j]==0) break;
}
}
} void getFactors(long long n){
fsize=0;
for (int i=0; i<psize && primes[i]*primes[i]<=n; i++){
if (n%primes[i]==0){
factors[fsize][0]=primes[i];
factors[fsize][1]=0;
while (n%primes[i]==0) factors[fsize][1]++, n/=primes[i];
fsize++;
}
}
if (n>1){
factors[fsize][0]=n;
factors[fsize++][1]=1;
}
} long long solve(long long n){
long long ans=1;
getFactors(n);
for (int i=0; i<fsize; i++)
ans*=factors[i][1]*2+1;
return (ans+1)/2;
} int main(void){
int T, kase=0;
long long n; initPrimes();
scanf("%d", &T);
while (T--){
scanf("%lld", &n);
printf("Case %d: %lld\n", ++kase, solve(n));
} return 0;
}
Time Memory Length Lang Submitted
540ms 14760kB 1096 C++ 2018-07-30 15:45:20

LightOJ-1236 Pairs Forming LCM 唯一分解定理的更多相关文章

  1. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

  2. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  3. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  4. LightOj 1236 Pairs Forming LCM (素数筛选&&唯一分解定理)

    题目大意: 有一个数n,满足lcm(i,j)==n并且i<=j时,(i,j)有多少种情况? 解题思路: n可以表示为:n=p1^x1*p2^x1.....pk^xk. 假设lcm(a,b) == ...

  5. LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i,  j)满足 LCM(i, j) = n, ...

  6. LightOJ 1236 Pairs Forming LCM【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1236 题意: 找与n公倍数为n的个数. 分析: ...

  7. LightOJ 1236 Pairs Forming LCM 合数分解

    题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数 分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^ ...

  8. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  9. Light oj 1236 - Pairs Forming LCM (约数的状压思想)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意很好懂,就是让你求lcm(i , j)的i与j的对数. 可以先预处理1e7以 ...

随机推荐

  1. map————两个数组的交集(2)

    class Solution { public: vector<int> intersect(vector<int>& nums1, vector<int> ...

  2. jQuery 简单介绍

    jQuery  简单介绍 jQuery的定义 jQuery是一个快速,小巧,功能丰富的JavaScript库.它通过易于使用的API在大量浏览器中运行,使得   HTML文档遍历和操作,事件处理,动画 ...

  3. SpringBoot+Maven聚合多项目打包成jar

    已我最近自己在玩的一个DEMO为例 taosir为pom.xml,其他子项目均为其modules,且为jar项目 eureka为注册中心.workflow为提供者.entrance为调用方 entra ...

  4. 【codeforces 733E】Sleep in Class

    [题目链接]:http://codeforces.com/problemset/problem/733/E [题意] 有n级台阶,每个台阶上都有一个tag; 标记着向上或向下; 你到了某级台阶,就要按 ...

  5. DML语句(添加、更新和删除记录)

       a.添加记录(一次插入一行记录)     insert into 表名(字段名,字段名...)     values (字段值,字段值...)       insert into person ...

  6. 洛谷 2409 dp 月赛题目

    洛谷 2409 dp 洛谷十月月赛T1,一道有些interesting的dp题目,当时做的时候想的比较复杂,根本没有往dp的方向去想.. 非官方题解: 1.据说可以使用优先队列来处理,参见Uva119 ...

  7. 【转】工具系列:IntelliJ IDEA (Mac) 运行速度优化

    转自工具系列:IntelliJ IDEA (Mac) 运行速度优化 感谢该作者解决了我使用idea debug很慢的问题 背景 IDEA 下运行程序,经常假死 5 s,作为 Mac 怎么能允许暂停 5 ...

  8. 【剑指offer】Q31:连续子数组的组大和

    简短的分析见:http://blog.csdn.net/shiquxinkong/article/details/17934747 def FindGreatestSumOfSubArray(arra ...

  9. 安卓ProgressBar水平进度条的颜色设置

    安卓系统提供了水平进度条ProgressBar的样式,而我们在实际开发中,差点儿不可能使用默认的样式.原因就是"太丑"^_^ 所以我们在很多其它的时候须要对其颜色进行自己定义,主要 ...

  10. SICP 习题 (1.41)解题总结

    SICP 习题1.41 看似和周边的题目没有关系,突然叫我们去定义一个叫double的过程,事实上这道题的核心还是高阶函数. 题目要求我们定义一个过程double,它以一个过程作为參数,这个作为參数的 ...