题目链接:https://cn.vjudge.net/problem/LightOJ-1236

题意

给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n

注意数据范围n<=10^14

思路

唯一分解定理

要注意的是条件a<=b,这就是说,在不要求大小关系的情况下

ans包括a<b,a>b和a==b的情形,最终答案就是(ans+1)/2

注意数据范围,求因数时使用1e7的素数即可,剩余的未被分解的数一定是大素数

首先求一下素数加速求因数,其次注意prime*prime<=n是另一优化

提交过程

TLE1 没注意数据范围,用了没有优化的getFactors
WA*n 模版有问题,一直在尝试优化
WA 注意ans=factors[i][0]2+1;
TLE2 第二个prime*prime<=n的优化没做
WA 注意long long范围
AC

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e7+20;
int factors[100][2], fsize, primes[maxn/10], psize;
bool isprime[maxn];
void initPrimes(void){
memset(isprime, true, sizeof(isprime));
isprime[0]=isprime[1]=false;
for (int i=2; i<=maxn; i++){
if(isprime[i]) primes[psize++]=i;
for (int j=0; j<psize && i*primes[j]<=maxn; j++){
isprime[primes[j]*i]=false;
if (i%primes[j]==0) break;
}
}
} void getFactors(long long n){
fsize=0;
for (int i=0; i<psize && primes[i]*primes[i]<=n; i++){
if (n%primes[i]==0){
factors[fsize][0]=primes[i];
factors[fsize][1]=0;
while (n%primes[i]==0) factors[fsize][1]++, n/=primes[i];
fsize++;
}
}
if (n>1){
factors[fsize][0]=n;
factors[fsize++][1]=1;
}
} long long solve(long long n){
long long ans=1;
getFactors(n);
for (int i=0; i<fsize; i++)
ans*=factors[i][1]*2+1;
return (ans+1)/2;
} int main(void){
int T, kase=0;
long long n; initPrimes();
scanf("%d", &T);
while (T--){
scanf("%lld", &n);
printf("Case %d: %lld\n", ++kase, solve(n));
} return 0;
}
Time Memory Length Lang Submitted
540ms 14760kB 1096 C++ 2018-07-30 15:45:20

LightOJ-1236 Pairs Forming LCM 唯一分解定理的更多相关文章

  1. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

  2. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  3. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  4. LightOj 1236 Pairs Forming LCM (素数筛选&&唯一分解定理)

    题目大意: 有一个数n,满足lcm(i,j)==n并且i<=j时,(i,j)有多少种情况? 解题思路: n可以表示为:n=p1^x1*p2^x1.....pk^xk. 假设lcm(a,b) == ...

  5. LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i,  j)满足 LCM(i, j) = n, ...

  6. LightOJ 1236 Pairs Forming LCM【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1236 题意: 找与n公倍数为n的个数. 分析: ...

  7. LightOJ 1236 Pairs Forming LCM 合数分解

    题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数 分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^ ...

  8. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  9. Light oj 1236 - Pairs Forming LCM (约数的状压思想)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意很好懂,就是让你求lcm(i , j)的i与j的对数. 可以先预处理1e7以 ...

随机推荐

  1. jtable的用法

    一.创建表格控件的各种方式:1)  调用无参构造函数.JTable table = new JTable();2)  以表头和表数据创建表格.Object[][] cellData = {{" ...

  2. 第九章 Python之面向对象

    面向对象编程 面向对象编程是一种程序设计思想,它把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数 面向过程的程序设计把计算机程序视为一系列命令的集合,即一组函数的顺序执行.为了简化程序设计 ...

  3. Parse error: syntax error, unexpected '__data' (T_STRING), expecting ',' or ')'

    使用laravel时,建立view文件引入dafault文件时报错: Parse error: syntax error, unexpected '__data' (T_STRING), expect ...

  4. git--客户端管理工具初步使用

    说点废话哈 小白一枚, 今年3月份进入自己的第一家公司, 开始成为前端中的一份子,好在公司里有位和我一同进来的一位老哥带着我,从老哥身上学到的知识不多,(因为和老哥只相处工作了三个月,因为家里的事情, ...

  5. 二、frps 完整配置文件

    # [common] is integral section [common] # A literal address or host name for IPv6 must be enclosed # ...

  6. java.lang.NoClassDefFoundError: org/apache/commons/collections4/ListValuedMap

    最近在使用java PiO导入导出Excle在windos本机上运行没有问题: 但是!!问题来了!放到Linux服务器上部署后出现异常 java.lang.NoClassDefFoundError: ...

  7. 初识单点登录及JWT实现

    单点登录 多系统,单一位置登录,实现多系统同时登录的一种技术 (三方登录:某系统使用其他系统的用户,实现本系统登录的方式.如微信登录.支付宝登录) 单点登录一般是用于互相授信的系统,实现单一位置登录, ...

  8. VUE:class与style强制绑定

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. Bate版总结会议2

    本次会议主要是针对我们在冲刺阶段出现的问题进行的讨论.再有就是以后在开发中应该改进的地方. 问题一: 工作任务不能拖:因为任务一拖就很可能无法再规定的时间内完成,如果我们可以分配好任务就去做的话,我们 ...

  10. iis解析json

    一. windows XP 1. MIME设置:在IIS的站点属性的HTTP头设置里,选MIME 映射中点击”文件类型”-”新类型”,添加一个文件类型:关联扩展名:*.json内容类型(MIME):a ...