今天在做题时巧遇了很多此类型的矩阵,出于更快解,对此进行学习。(感谢up主线帒杨

1、认识ab矩阵

形如:主对角线元素都是a,其余元素都是b,我们称之为ab矩阵(默认涉及即为n×n阶

2、求|A|

证明:

3、求高次幂

将矩阵A拆分成A=λE+B,矩阵B的高次幂 \(B^n\) 运用以下“二项式”公式易得:

一题:

4、秩

一题:【r(A)<n,|A|=0】

5、齐次方程组

一题:

6、特征值与特征向量

结合前面所学的求|A|更快计算|λE-A|,建议收藏本题并注意5:20处的小技巧。

tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$

7、考研真题

(1)97真题

(2)16真题

定义:If P、Q可逆,PAQ=B ,则A和B等价。【快:r(A)=r(B),则等价】

$λ_{1}$ 、 $λ_{2}$ 、 $λ_{3}$ 符号 二次曲面f( $x_{1}$ , $x_{2}$ , $x_{3}$ )=2形状
3正(都相等) 椭球面(球面)
2正1负 单叶双曲面
2正1零(正的相等) 椭圆柱面(圆柱面)
1正2负 双叶双曲面
1正1负1零 双曲柱面

tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$

(3)07真题

相似: \(P^{-1}AP=B\) , 合同: \(P^{T}AP=B\)(P可逆)

判定相似:若A与B有相同特征值且A与B都能相似对角化,则A与B相似

判定合同:(前提:A,B为实对称矩阵)A与B有相同的正、负惯性指数或A与B特征值的正负个数相同

(4)14真题

\(A^{T}=A\) 一定可以对角化

(5)03真题

若A与B相似,A与B有相同的特征值

A可逆,A, \(A^{-1}\) ,\(A^{*}\) 特征向量相同

ab矩阵(实对称矩阵)的更多相关文章

  1. $A,B$ 实对称 $\ra\tr((AB)^2)\leq \tr(A^2B^2)$

    设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明:  由  $$\bex  \sum_i \sez{\su ...

  2. 【Math for ML】矩阵分解(Matrix Decompositions) (上)

    I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...

  3. Hermite 矩阵及其特征刻画

    将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...

  4. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  5. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  6. Hessian矩阵与多元函数极值

    Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...

  7. 矩阵——特征向量(Eigenvector)

    原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定 ...

  8. Moore-Penrose Matrix Inverse 摩尔-彭若斯广义逆 埃尔米特矩阵 Hermitian matrix

    http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数.对于只包含实数 ...

  9. eigen矩阵操作练习

    // // Created by qian on 19-7-16. // /* 相机位姿用四元数表示 q = [0.35, 0.2, 0.3, 0.1] x,y,z,w * 注意:输入时Quatern ...

随机推荐

  1. git换行符自动转换导致整个文件被修改的解决方案

    不少开发者可能遇到过这个问题:从git上拉取服务端代码,然后只修改了一处地方,准备提交时,用diff软件查看,却发现整个文件都被修改了.这是git自动转换换行符导致的问题. 原因 不同操作系统使用的换 ...

  2. 通过mstsc复制粘贴失败需要重新启动RDP剪切板监视程序rdpclip.exe

    先结束程序 再重新启动程序

  3. Java-枚举(Enum)

    1.枚举概述 枚举是一个被命名的整型常数的集合,用于声明一组带标识符的常熟.当一个变量有几种固定可能的取值时,就可以将其定义为枚举类型. 1.1 声明枚举 Java中枚举是一个特殊的类,使用enum关 ...

  4. 限制只有VIP会员才能下载Ecshop文章页的附件

    以官方2.7.2默认模板为基础来讲述一下"如何在文章详情页限制只有VIP会员才能下载相关附件"这里假设VIP会员的等级ID为2首先修改 article.php 文件打开 /arti ...

  5. Linux系列(9) - whoami和whatis

    whoami 作用:当前你登录的用户是谁 whatis [命令] 作用:查询[命令]是干嘛的 我们试一下对文件和目录whatis行不行,结果发现不行:但是有没有发现对命令whatis也不行,为什么呢: ...

  6. python刷题第二周

    1: 第3章-5 字符转换 (15 分) 本题要求提取一个字符串中的所有数字字符('0'--'9'),将其转换为一个整数输出. 输入格式: 输入在一行中给出一个不超过80个字符且以回车结束的字符串. ...

  7. Matlab使用随记

    Matlab 2020 想要看图像每一点的值大小 工具--->数据提示 想要导出的分辨率提高 导出设置--->渲染--->600dpi Matlab 2017b 程序运行后,画出图, ...

  8. PHP 一个树为另一棵树的子结构 [TO BE CONTINUED]

    输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) <?php class TreeNode { private $val; private $left; ...

  9. python读取ini文件

    import configparser import os config=configparser.ConfigParser()#创建config对象 file_path=os.path.dirnam ...

  10. solidity 错误

    solidity版本 0.7.5 Member "transfer" not found or not visible after argument-dependent looku ...