Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial Networks[J]. arXiv: Cryptography and Security, 2018.

@article{xiao2018generating,

title={Generating Adversarial Examples with Adversarial Networks},

author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},

journal={arXiv: Cryptography and Security},

year={2018}}

本文利用GAN生成adversarial samples.

主要内容

其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).

训练判别器很普通的GAN是类似的, 即最大化下式:

\[\tag{1}
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]

训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要

\[\tag{2}
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]

其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).

\[\tag{3}
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]

显然(3)是保证摄动不要太大.

所以训练生成器是最小化

\[\tag{4}
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]

black-box 拓展

该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).

  1. 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\[\mathcal{G}_i, \mathcal{D}_i = \arg \min _{\mathcal{G}} \max_{\mathcal{D}} \mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
  1. 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\[f_i=\arg \min_f \mathbb{E}_x \mathcal{H} (f(x), b(x)) + \mathbb{E}_x \mathcal{H} (f(x+\mathcal{G}_i(x)), b(x+\mathcal{G}_i(x))).
\]

其中\(\mathcal{H}\)表示交叉熵损失.

Generating Adversarial Examples with Adversarial Networks的更多相关文章

  1. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  2. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  3. 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages

    Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...

  4. 《Explaining and harnessing adversarial examples》 论文学习报告

    <Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Sz ...

  5. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

    目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...

  6. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

  7. 文本adversarial examples

    对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...

  8. Limitations of the Lipschitz constant as a defense against adversarial examples

    目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...

  9. Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

    Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...

随机推荐

  1. Mysql索引数据结构详解(1)

    慢查询解决:使用索引  索引是帮助Mysql高效获取数据的排好序的数据结构 常见的存储数据结构: 二叉树    二叉树不适合单边增长的数据 红黑树(又称二叉平衡树)    红黑树会自动平衡父节点两边的 ...

  2. nodejs-Cluster模块

    JavaScript 标准参考教程(alpha) 草稿二:Node.js Cluster模块 GitHub TOP Cluster模块 来自<JavaScript 标准参考教程(alpha)&g ...

  3. 容器之分类与各种测试(三)——queue

    queue是单端队列,但是在其实现上是使用的双端队列,所以在queue的实现上多用的是deque的方法.(只要用双端队列的一端只出数据,另一端只进数据即可从功能上实现单端队列)如下图 例程 #incl ...

  4. redis入门到精通系列(一)

    (一)为什么要用Nosql 如果你是计算机本科学生 ,那么一定使用过关系型数据库mysql.在请求量小的情况下,使用mysql不会有任何问题,但是一旦同时有成千上万个请求同时来访问系统时,就会出现卡顿 ...

  5. 【Linux】【Services】【Package】yum

    Linux程序包管理(2)       CentOS: yum, dnf       URL: ftp://172.16.0.1/pub/        YUM: yellow dog, Yellow ...

  6. SpringCloud技术涵盖简介

    SpringCloud是微服务架构的集大成者,云计算最佳业务实践. 我们平常使用的Spring和他们的关系,对Spring,springboot , SpringCloud 的 概念区分,上图: Sp ...

  7. Jenkins安全加固

    1.jenkins未授权访问 描述 jenkins不当配置可导致未授权访问管理控制台,可以通过脚本命令行执行系统命令.通过该漏洞,可以后台管理服务,通过脚本命令行功能执行系统命令,如反弹shell,w ...

  8. shell脚本 awk实现查看ip连接数

    一.简介 处理文本,是awk的强项了. 无论性能已经速度都是让人惊叹! 二.使用 适用:centos6+ 语言:英文 注意:无 awk 'BEGIN{ while("netstat -an& ...

  9. df和du显示不同

    目录 一.简介 二.原因分析 三.解决方法 一.简介 Linux服务器,使用df -h查看文件系统使用率,可以看到/dev/xvdb1磁盘占用了约27G,挂载目录为/opt. 但进入到opt目录中执行 ...

  10. Linux进程操作

    查看进程启动时间 ps -eo pid,lstart | grep PID 查看进程的运行多久 ps -eo pid,etime |grep PID 查看进程中启动了哪些线程 top -H -p pi ...