Generating Adversarial Examples with Adversarial Networks
@article{xiao2018generating,
title={Generating Adversarial Examples with Adversarial Networks},
author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},
journal={arXiv: Cryptography and Security},
year={2018}}
概
本文利用GAN生成adversarial samples.
主要内容
其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).
训练判别器很普通的GAN是类似的, 即最大化下式:
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]
训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]
其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]
显然(3)是保证摄动不要太大.
所以训练生成器是最小化
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
black-box 拓展
该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).
- 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\]
- 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\]
其中\(\mathcal{H}\)表示交叉熵损失.
Generating Adversarial Examples with Adversarial Networks的更多相关文章
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- 《Explaining and harnessing adversarial examples》 论文学习报告
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-27 1 背景 Sz ...
- EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
- 文本adversarial examples
对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...
- Limitations of the Lipschitz constant as a defense against adversarial examples
目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...
- Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...
随机推荐
- Spark产生数据倾斜的原因以及解决办法
Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合.在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集.当spark调度并运行任务的时候,Spark会为每一个分 ...
- 零基础学习java------35---------删除一个商品案例,删除多个商品,编辑(修改商品信息),校验用户名是否已经注册(ajax)
一. 删除一个商品案例 将要操作的表格 思路图 前端代码 <%@ page language="java" contentType="text/html; cha ...
- Vue中加载百度地图
借助百度地图的 LocalSearch 和 Autocomplete 两个方法 实现方式:通过promise以及百度地图的callback回调函数 map.js 1 export function M ...
- 节省内存的循环banner(一)
循环banner是指scrollview首尾相连,循环播放的效果,使用非常广泛.例如淘宝的广告栏等. 如果是简单的做法可以把所有要显示的图片全部放进一个数组里,创建相同个数的图片视图来显示图片.这样的 ...
- GO 总章
GO 学习资源 go 代理 GO 语言结构 GO 数字运算 GO 时间处理 GO 定时器 GO 异常处理 go recover让崩溃的程序继续执行 GO Exit Fatal panic GO 通过进 ...
- springboot-使用AOP日志拦截实现
一 前言 借助spring的AOP功能,我们可以将AOP应用至全局异常处理,全局请求拦截等,本篇文章的核心功能就是使用AOP实现日志记录,比如哪些用户进行了哪些操作,对于一个成功的项目这是必须记录的, ...
- zabbix之修改中文
#在zabbix服务器安装中文名包 root@ubuntu:~# sudo apt-get install language-pack-zh* #:修改环境变量 root@ubuntu:~# sudo ...
- File类及常用操作方法
import java.io.File; import java.io.IOException; public class file { public static void main(String[ ...
- Spring Boot对静态资源的映射规则
规则一:所有 " /webjars/** " 请求都去classpath:/META-INF/resources/webjars/找资源 webjars:以jar包的方式引入静态资 ...
- ASP.NET Core中使用滑动窗口限流
滑动窗口算法用于应对请求在时间周期中分布不均匀的情况,能够更精确的应对流量变化,比较著名的应用场景就是TCP协议的流量控制,不过今天要说的是服务限流场景中的应用. 算法原理 这里假设业务需要每秒钟限流 ...