Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial Networks[J]. arXiv: Cryptography and Security, 2018.

@article{xiao2018generating,

title={Generating Adversarial Examples with Adversarial Networks},

author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},

journal={arXiv: Cryptography and Security},

year={2018}}

本文利用GAN生成adversarial samples.

主要内容

其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).

训练判别器很普通的GAN是类似的, 即最大化下式:

\[\tag{1}
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]

训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要

\[\tag{2}
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]

其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).

\[\tag{3}
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]

显然(3)是保证摄动不要太大.

所以训练生成器是最小化

\[\tag{4}
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]

black-box 拓展

该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).

  1. 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\[\mathcal{G}_i, \mathcal{D}_i = \arg \min _{\mathcal{G}} \max_{\mathcal{D}} \mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
  1. 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\[f_i=\arg \min_f \mathbb{E}_x \mathcal{H} (f(x), b(x)) + \mathbb{E}_x \mathcal{H} (f(x+\mathcal{G}_i(x)), b(x+\mathcal{G}_i(x))).
\]

其中\(\mathcal{H}\)表示交叉熵损失.

Generating Adversarial Examples with Adversarial Networks的更多相关文章

  1. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  2. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  3. 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages

    Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...

  4. 《Explaining and harnessing adversarial examples》 论文学习报告

    <Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Sz ...

  5. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

    目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...

  6. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

  7. 文本adversarial examples

    对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...

  8. Limitations of the Lipschitz constant as a defense against adversarial examples

    目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...

  9. Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

    Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...

随机推荐

  1. day30线程(Threads)

    day30线程(Threads) 1.开启线程 一.什么是线程: 1.进程是资源分配的最小单位,线程是CPU调度的最小单位.每一个进程中至少有一个线程. 2.主进程中的线程称为主线程,其他开启的线程称 ...

  2. Linux学习 - 正则表达式

    一.正则表达式与通配符 正则表达式:在文件中匹配符合条件的字符串,正则是包含匹配 通配符:用来匹配符合条件的文件名,通配符是完全匹配 二.基础正则表达式 元字符 作用 a* a有0个或任意多个 . 除 ...

  3. Linux后台启动服务

    systemctl 启动/关闭/启用/禁用服务 总结 启动服务 systemctl start test.service 关闭服务 systemctl stop test.service 重启服务 s ...

  4. 【编程思想】【设计模式】【行为模式Behavioral】状态模式State

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/state.py #!/usr/bin/env pytho ...

  5. 【Python】【Module】re

    python中re模块提供了正则表达式相关操作 字符: . 匹配除换行符以外的任意字符 \w 匹配字母或数字或下划线或汉字 \s 匹配任意的空白符 \d 匹配数字 \b 匹配单词的开始或结束 ^ 匹配 ...

  6. ERROR: Command errored out with exit status 1:安装pip3 install --user pyecharts==0.5.11失败问题总结

    一.前言:最近在学习pyecharts学习到Grid时候发现代码无法运行了,经过在网上查找资料说是pyecharts版本不适配了,之前的版本是 pip install pyecharts==0.1.9 ...

  7. input type="file"多图片上传

    单个的input type="file"表单也是可以实现多图片上传的 代码如下: <form action="manypic.php" method=&q ...

  8. 转:Java多线程基础问题

    如果你即将去一家从事大型系统研发的公司进行Java面试,不可避免的会有多线程相关的问题.下面是一些针对初学者或者新手的问题,如果你已经具备良好的基础,那么你可以跳过本文,直接尝试针对进阶水平的Java ...

  9. 自定义 UITableViewCell 的 accessory 样式

    对于 UITableViewCell 而言,其 accessoryType属性有4种取值: UITableViewCellAccessoryNone, UITableViewCellAccessory ...

  10. 『学了就忘』Linux系统管理 — 84、Linux中进程的管理

    目录 1.Linux系统中的信号 2.杀掉进程的命令 (1)kill命令 (2)killall命令 (3)pkill命令 1.Linux系统中的信号 Linux系统中可以识别的信号较多,我们可以使用命 ...