P3312 数表

题意

求出

\[\sum_{i=1}^n\sum_{j=1}^m\sigma(\gcd(i,j))[\sigma(\gcd(i,j))\le a]
\]

其中 \(\sigma\) 表示约数和。

思路/推导

考虑没有 \(a\) 的限制的情况。

\[\begin{aligned}
ans&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[\gcd(i,j)=1]\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{p\mid i\land p\mid j}\mu(p)\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{p=1}^{\left\lfloor\frac{\min(n,m)}{d}\right\rfloor}\mu(p)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor\\
&=\sum_{T=1}^{\min(n,m)}\sum_{d=1}^T\sigma(d)\mu(\frac Td)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor
\end{aligned}
\]

考虑加入 \(a\) 的限制。将询问按照 \(a\) 大小离线,然后用一个树状数组维护 \(\sum_d\sigma(d)\mu(\frac Td)\) 的前缀和即可。

具体是将线性筛出的所有数的约数和从小到大进行排序,在从小到大查询的时候进行更新。

不会筛 \(\sigma\) 的可以看我的另一篇博客

时间复杂度瓶颈在于查询,需要用到数论分块,为 \(O(q\sqrt n\log n)\)。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<utility>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,maxm=2e4+10,N=1e5;
int n,p[maxn/10],mu[maxn],tot,c[maxn],ans[maxm],g[maxn];
pair<int,int> f[maxn];
bool mark[maxn];
inline void insert(int x,int k){for(;x<=N;x+=x&-x) c[x]+=k;}
inline int query(int x){int ans=0;for(;x;x-=x&-x) ans+=c[x];return ans;}
struct Query{
int n,m,a,id;
inline bool operator < (const Query& zp) const {return a<zp.a;}
inline int solve(){
if(n>m) swap(n,m);
int ans=0;
for(int l=1,r;l<=n;l=r+1)
r=min(n/(n/l),m/(m/l)),ans+=((query(r)-query(l-1))*(n/l)*(m/l));
return ans;
}
}q[maxm];
inline void work(){
mu[1]=1;
f[1]=make_pair(1,1);
for(int i=2;i<=N;i++){
if(!mark[i]) p[++tot]=i,mu[i]=-1,g[i]=i+1,f[i]=make_pair(i+1,i);
for(int j=1,tmp;j<=tot and (tmp=i*p[j])<=N;j++){
mark[tmp]=true;
if(i%p[j]==0){
mu[tmp]=0;
g[tmp]=g[i]*p[j]+1;
f[tmp]=make_pair(f[i].first/g[i]*g[tmp],tmp);
break;
}
mu[tmp]=-mu[i];
g[tmp]=p[j]+1;
f[tmp]=make_pair(f[i].first*f[p[j]].first,tmp);
}
}
sort(f+1,f+1+N);
n=read();
for(int i=1;i<=n;i++) q[i].n=read(),q[i].m=read(),q[i].a=read(),q[i].id=i;
sort(q+1,q+1+n);
for(int i=1,j=1;i<=n;i++){
while(f[j].first<=q[i].a and j<=N){
for(int k=f[j].second;k<=N;k+=f[j].second) insert(k,f[j].first*mu[k/f[j].second]);
j++;
}
ans[q[i].id]=q[i].solve();
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]&(~(1<<31)));
}
}
signed main(){
star::work();
return 0;
}

P3312 数表的更多相关文章

  1. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  2. P3312 [SDOI2014]数表

    啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...

  3. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  4. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  5. [bzoj3529] [洛谷P3312] [Sdoi2014] 数表

    Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  6. luogu P3312 [SDOI2014]数表

    传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...

  7. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  8. 洛谷 P3312 [SDOI2014]数表

    式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...

  9. 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表

    题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...

随机推荐

  1. DHCP的原理与配置

    DHCP 动态主机配置协议(Dynamic Host Configuration Protocol) 可以减少管理员的工作量 避免用户手工配置网络参数时造成的地址冲突 DHCP报文类型: 报文类型   ...

  2. seldom 2.0 让接口自动化测试更简单

    前言 HTTP接口测试很简单,不管工具.框架.还是平台,只要很的好的几个点就是好工具. 测试数据问题:比如删除接口,重复执行还能保持结果一致,必定要做数据初始化. 接口依赖问题:B接口依赖A的返回值, ...

  3. python+requests接口用例

    本实例通过请求接口登录系统,获取了配置项的ID,并最终实现了对配置项的默认值进行修改 使用到的接口请求方法有:get(查询) ,post(新增),put(修改) 遇到的阻碍点见下面具体代码处的详解 编 ...

  4. WordPress安装篇(5):源码编译安装LNMP并部署WordPress

    与YUM方式安装相比,源码编译安装方式更灵活,安装过程中能自定义功能和参数,特别是在批量部署服务器又要求软件版本及配置一致时,源码编译安装的优势很明显.本文介绍如何通过源码编译方式安装Nginx1.1 ...

  5. 安装redHat6.5详细图文教程

    ​ ​ 进入VM虚拟机,双击进入已经创建好的红帽6虚拟机 双击进入CD/DVD,准备添加红帽6.5的iso镜像文件 [红帽6.5的iso镜像文件需要先下载,redhat_6.5下载地址:https:/ ...

  6. Java并发之ReentrantLock源码解析(一)

    ReentrantLock ReentrantLock是一种可重入的互斥锁,它的行为和作用与关键字synchronized有些类似,在并发场景下可以让多个线程按照一定的顺序访问同一资源.相比synch ...

  7. 手摸手,带你用Beego撸商城系列二(登录篇)

    完整项目地址: go-shop-b2c 系列文章: 手摸手,带你用 Beego撸商城 系列一(基础篇) 手摸手,带你用 Beego撸商城 系列二(登录篇) 手摸手,带你用 Beego撸商城 系列三(系 ...

  8. 从 html 实现一个 react🎅

    前言 我们认为,React 是用 JavaScript 构建快速响应的大型 Web 应用程序的首选方式.它在 Facebook 和 Instagram 上表现优秀.官网地址 react 的理念是在于对 ...

  9. 10、linux启动过程

    (1)linux启动说明: 第一步:开机自检,检查硬件,加载BIOS(帮我们找到启动盘是谁): 第二步:读取MBR(读取启动硬盘0柱面0磁道1扇区(512字节)的前446字节,找到装有操作系统的分区) ...

  10. layui table 使用table放输入框时控制每列的宽度

    <table class="layui-table" lay-filter="demo"> <colgroup> <%--设置每列 ...