P3312 数表
P3312 数表
题意
求出
\]
其中 \(\sigma\) 表示约数和。
思路/推导
考虑没有 \(a\) 的限制的情况。
ans&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[\gcd(i,j)=1]\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{p\mid i\land p\mid j}\mu(p)\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{p=1}^{\left\lfloor\frac{\min(n,m)}{d}\right\rfloor}\mu(p)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor\\
&=\sum_{T=1}^{\min(n,m)}\sum_{d=1}^T\sigma(d)\mu(\frac Td)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor
\end{aligned}
\]
考虑加入 \(a\) 的限制。将询问按照 \(a\) 大小离线,然后用一个树状数组维护 \(\sum_d\sigma(d)\mu(\frac Td)\) 的前缀和即可。
具体是将线性筛出的所有数的约数和从小到大进行排序,在从小到大查询的时候进行更新。
不会筛 \(\sigma\) 的可以看我的另一篇博客
时间复杂度瓶颈在于查询,需要用到数论分块,为 \(O(q\sqrt n\log n)\)。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<utility>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,maxm=2e4+10,N=1e5;
int n,p[maxn/10],mu[maxn],tot,c[maxn],ans[maxm],g[maxn];
pair<int,int> f[maxn];
bool mark[maxn];
inline void insert(int x,int k){for(;x<=N;x+=x&-x) c[x]+=k;}
inline int query(int x){int ans=0;for(;x;x-=x&-x) ans+=c[x];return ans;}
struct Query{
int n,m,a,id;
inline bool operator < (const Query& zp) const {return a<zp.a;}
inline int solve(){
if(n>m) swap(n,m);
int ans=0;
for(int l=1,r;l<=n;l=r+1)
r=min(n/(n/l),m/(m/l)),ans+=((query(r)-query(l-1))*(n/l)*(m/l));
return ans;
}
}q[maxm];
inline void work(){
mu[1]=1;
f[1]=make_pair(1,1);
for(int i=2;i<=N;i++){
if(!mark[i]) p[++tot]=i,mu[i]=-1,g[i]=i+1,f[i]=make_pair(i+1,i);
for(int j=1,tmp;j<=tot and (tmp=i*p[j])<=N;j++){
mark[tmp]=true;
if(i%p[j]==0){
mu[tmp]=0;
g[tmp]=g[i]*p[j]+1;
f[tmp]=make_pair(f[i].first/g[i]*g[tmp],tmp);
break;
}
mu[tmp]=-mu[i];
g[tmp]=p[j]+1;
f[tmp]=make_pair(f[i].first*f[p[j]].first,tmp);
}
}
sort(f+1,f+1+N);
n=read();
for(int i=1;i<=n;i++) q[i].n=read(),q[i].m=read(),q[i].a=read(),q[i].id=i;
sort(q+1,q+1+n);
for(int i=1,j=1;i<=n;i++){
while(f[j].first<=q[i].a and j<=N){
for(int k=f[j].second;k<=N;k+=f[j].second) insert(k,f[j].first*mu[k/f[j].second]);
j++;
}
ans[q[i].id]=q[i].solve();
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]&(~(1<<31)));
}
}
signed main(){
star::work();
return 0;
}
P3312 数表的更多相关文章
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- P3312 [SDOI2014]数表
啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...
- 洛谷 P3312 [SDOI2014]数表 解题报告
P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...
- 洛谷P3312 - [SDOI2014]数表
Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...
- [bzoj3529] [洛谷P3312] [Sdoi2014] 数表
Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- luogu P3312 [SDOI2014]数表
传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...
- 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)
传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...
- 洛谷 P3312 [SDOI2014]数表
式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...
- 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表
题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...
随机推荐
- 十五、.net core(.NET 6)搭建RabbitMQ消息队列生产者和消费者的简单方法
搭建RabbitMQ简单通用的直连方法 如果还没有MQ环境,可以参考上一篇的博客,在windows系统上的rabbitmq环境搭建.如果使用docker环境,可以直接百度一下,应该就一个语句就可以搞定 ...
- 这 7 个 Linux 命令,你是怎么来使用的?
使用 Linux 系统的开发者,很多人都有自己喜欢的系统命令,下面这个几个命令令是我平常用的比较多的,分享一下. 我不会教科书般的罗列每个指令的详细用法,只是把日常开发过程中的一些场景下,经常使用的命 ...
- expdp数据泵导出数据汇总
[oracle@enmo1 ~]$ mkdir datadump[oracle@enmo1 ~]$ cd datadump/[oracle@enmo1 datadump]$ pwd/home/orac ...
- 手写Spring Config,最终一战,来瞅瞅撒!
上一篇说到了手写Spring AOP,来进行功能的增强,下面本篇内容主要是手写Spring Config.通过配置的方式来使用Spring 前面内容链接: 我自横刀向天笑,手写Spring IOC容器 ...
- VBS脚本编程(3)——常用函数
数据类型转换函数 1.Hex 函数 返回表示十六进制数字值的字符串. Hex(number) number 参数是任意有效的表达式. 说明 如果 number 参数不是整数,则在进行运算前将其四舍五入 ...
- Golang学习(用代码来学习) - 第五篇
/** 并发控制:context的学习 */ func context_test() { PrintStartSeperator("context_test") ctx, canc ...
- CSS 奇思妙想 | 全兼容的毛玻璃效果
通过本文,你能了解到 最基本的使用 CSS backdrop-filter 实现磨砂玻璃(毛玻璃)的效果 在至今不兼容 backdrop-filter 的 firefox 浏览器,如何利用一些技巧性的 ...
- VueJs(16)---Nuxt引入mavon-editor插件实现markdown功能
Vue引入mavon-editor插件实现markdown功能 说明 mavon-editor是一款基于Vue的markdown编辑器,因为当前项目是采用Nuxt,所以这里所展示的教程是针对Nuxt引 ...
- 三、JavaSE语言基础之数据类型
数据类型的分类 按照数据的复杂程度可分为引用数据类型与基本数据类型 引用数据类型的数据是对象(多值数据/复杂数据),引用数据类型的数据的名字叫做引用/引用名: 基本数据类型的数据是常量值( ...
- c++实现希尔密码
实验名称: 希尔密码的实现(c++版;本文只以26个大写英文字符作为加密后的密文的可选项) 实验原理: 引用知识: 记 Zm={0,1,2,...,m-1} 定义1:设A为定义在集合Zm 上的n阶方阵 ...