P3312 数表
P3312 数表
题意
求出
\]
其中 \(\sigma\) 表示约数和。
思路/推导
考虑没有 \(a\) 的限制的情况。
ans&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[\gcd(i,j)=1]\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{p\mid i\land p\mid j}\mu(p)\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{p=1}^{\left\lfloor\frac{\min(n,m)}{d}\right\rfloor}\mu(p)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor\\
&=\sum_{T=1}^{\min(n,m)}\sum_{d=1}^T\sigma(d)\mu(\frac Td)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor
\end{aligned}
\]
考虑加入 \(a\) 的限制。将询问按照 \(a\) 大小离线,然后用一个树状数组维护 \(\sum_d\sigma(d)\mu(\frac Td)\) 的前缀和即可。
具体是将线性筛出的所有数的约数和从小到大进行排序,在从小到大查询的时候进行更新。
不会筛 \(\sigma\) 的可以看我的另一篇博客
时间复杂度瓶颈在于查询,需要用到数论分块,为 \(O(q\sqrt n\log n)\)。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<utility>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,maxm=2e4+10,N=1e5;
int n,p[maxn/10],mu[maxn],tot,c[maxn],ans[maxm],g[maxn];
pair<int,int> f[maxn];
bool mark[maxn];
inline void insert(int x,int k){for(;x<=N;x+=x&-x) c[x]+=k;}
inline int query(int x){int ans=0;for(;x;x-=x&-x) ans+=c[x];return ans;}
struct Query{
int n,m,a,id;
inline bool operator < (const Query& zp) const {return a<zp.a;}
inline int solve(){
if(n>m) swap(n,m);
int ans=0;
for(int l=1,r;l<=n;l=r+1)
r=min(n/(n/l),m/(m/l)),ans+=((query(r)-query(l-1))*(n/l)*(m/l));
return ans;
}
}q[maxm];
inline void work(){
mu[1]=1;
f[1]=make_pair(1,1);
for(int i=2;i<=N;i++){
if(!mark[i]) p[++tot]=i,mu[i]=-1,g[i]=i+1,f[i]=make_pair(i+1,i);
for(int j=1,tmp;j<=tot and (tmp=i*p[j])<=N;j++){
mark[tmp]=true;
if(i%p[j]==0){
mu[tmp]=0;
g[tmp]=g[i]*p[j]+1;
f[tmp]=make_pair(f[i].first/g[i]*g[tmp],tmp);
break;
}
mu[tmp]=-mu[i];
g[tmp]=p[j]+1;
f[tmp]=make_pair(f[i].first*f[p[j]].first,tmp);
}
}
sort(f+1,f+1+N);
n=read();
for(int i=1;i<=n;i++) q[i].n=read(),q[i].m=read(),q[i].a=read(),q[i].id=i;
sort(q+1,q+1+n);
for(int i=1,j=1;i<=n;i++){
while(f[j].first<=q[i].a and j<=N){
for(int k=f[j].second;k<=N;k+=f[j].second) insert(k,f[j].first*mu[k/f[j].second]);
j++;
}
ans[q[i].id]=q[i].solve();
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]&(~(1<<31)));
}
}
signed main(){
star::work();
return 0;
}
P3312 数表的更多相关文章
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- P3312 [SDOI2014]数表
啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...
- 洛谷 P3312 [SDOI2014]数表 解题报告
P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...
- 洛谷P3312 - [SDOI2014]数表
Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...
- [bzoj3529] [洛谷P3312] [Sdoi2014] 数表
Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- luogu P3312 [SDOI2014]数表
传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...
- 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)
传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...
- 洛谷 P3312 [SDOI2014]数表
式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...
- 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表
题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...
随机推荐
- 『言善信』Fiddler工具 — 9、Fiddler自动响应器(AutoResponder)详解
目录 1.AutoResponder介绍 2.AutoResponder界面说明 (1)选项: (2)按钮: (3)Rule Editor(规则编辑): (4)test(测试): (5)规则框: 1. ...
- 三、Tomcat配置文件的介绍
*允许直接复制另外多份完整的tomcat数据,修改配置保证不冲突,起多个tomcat,优点:其中一个tomcat挂了不影响其他网页 tomcat配置文件server.xml介绍 <Server& ...
- 把HttpClient换成IHttpClientFactory之后,放心多了
前言 关于HttpClient的使用,个人在很多场景都派上用场了,比如在Winform或后台服务中用其调用接口获取和上传数据.微服务中用其进行各服务之间的数据共享等,到目前来看,似乎还没有出现过什么问 ...
- 【NX二次开发】Block UI 切换开关
属性说明 常规 类型 描述 BlockID String 控件ID Enable Logical 是否可操作 Group Logical ...
- Java8中一个极其强悍的新特性,很多人没用过(非常实用)
Java8中有两个非常有名的改进,一个是Lambda表达式,一个是Stream.如果我们了解过函数式编程的话,都知道Stream真正把函数式编程的风格引入到了java中.这篇文章由简入繁逐步介绍Str ...
- NOIP模拟测试4「礼物·通讯·奇袭」
礼物. 首先见到期望一定要想dp,看到n的范围无脑想状压, 然后我就只想到这了. dp方程式还是比较好想的,但是我依然想不出来 略经思考 颓题解 依然不会,随便写了个式子 i状态中不含j $f[i ...
- C#调百度通用翻译API翻译HALCON的示例描述
目录 准备工作 参数简介 输入参数 输出参数 使用HttpClient 翻译工具类 应用:翻译HALCON的示例描述 准备工作 HALCON示例程序的描述部分一直是英文的,看起来很不方便.我决定汉化一 ...
- pipenv管理模块和包
pipenv安装 1. 在终端输入:pip install pipenv进行安装 用pipenv创建虚拟环境:pipenv install,在哪个文件下运行这个命令,就是给哪个文件创建虚拟环境 这 ...
- 关于.Net Core使用Elasticsearch(俗称ES)、Kibana的研究说明
关于ElasticSearch Elasticsearch是一个分布式的开源搜索和分析引擎,适用于所有类型的数据,包括文本.数字.地理空间.结构化和非结构化数据.Elasticsearch 在 Apa ...
- 基于Yarp的http内网穿透库HttpMouse
简介 前几天发表了<基于Yarp实现内网http穿透>,当时刚刚从原理图变成了粗糙的代码实现,项目连名字都还没有,也没有开放源代码.在之后几天的时间,我不断地重构,朝着"可集成. ...