CF20C Dijkstra? 题解
Content
给定一张 \(n\) 个点 \(m\) 条边的无向图,请判断是否有一条可行的从 \(1\) 到 \(n\) 的路径,有的话输出长度最短的,没有的话输出 -1
。
数据范围:\(2\leqslant n\leqslant 10^5\),\(0\leqslant m\leqslant 10^5\),每条边的长度不超过 \(10^6\)。
Solution
这道题的标题当中看上去是在误导你不用 \(\textsf{Dijkstra}\),其实已经给出了这道题目的做法就是:\(\textsf{Dijkstra}\)。为了优化复杂度,我用了堆优化 + \(\textsf{Dijkstra}\)。
那么 \(\textsf{Dijkstra}\) 如何做到能够输出路径呢?这里我们就需要用到一个 \(\textit{pre}\) 数组,其中 \(\textit{pre}_i\) 表示最短路径中在 \(i\) 点前面的点。我们可以在 \(\textsf{Dijkstra}\) 处理 \(\textit{dis}\) 数组的时候就把这个 \(pre\) 更新一遍,就像这样:
for(int i = h[x]; i; i = e[i].nxt) {
int y = e[i].to, z = e[i].v;
if(dis[y] > dis[x] + z) { //更新最短路
dis[y] = dis[x] + z, pre[y] = x; //更新最短路的长度和当前点在最短路上的前一个节点。
q.push(make_pair(-dis[y], y));
}
}
那么我们又如何判断是否存在从 \(1\) 到 \(n\) 最短路径呢?这里给出两种方法:
第一种,还记得我们在跑 \(\textsf{Dijkstra}\) 的时候要先做什么吗?没错,初始化 \(\textit{dis}\) 数组。由于是最短路,我们需要将这个 \(\textit{dis}\) 数组的初值设得尽可能大,又因为在数据范围中我们发现:
\(0\leqslant m\leqslant 10^5\),每条边的长度不超过 \(10^6\)。
所以我们就知道了,可能最长的最短路长度为 \(10^5\times 10^6=10^{11}\),因此我们需要开 long long,并将这个 \(\textit{dis}\) 数组赋初值赋在 \(10^{11}\) 以上,下面这一段以笔者在代码中赋的初值 \(10^{18}\) 为准。
然后我们就可以通过这个来判断是否存在到 \(n\) 的最短路径了:只需要判断是否有 \(\textit{dis}_n\neq10^{18}\) 即可,因为如果 \(\textit{dis}_n=10^{18}\),那么就说明 \(\textit{dis}_n\) 还从来没有更新过,自然也就不存在从 \(1\) 到 \(n\) 的最短路径了。
第二种,就要用到这一题中所引入的 \(\textit{pre}\) 数组了,我们可以从 \(n\) 开始,直接利用 \(x\leftarrow\textit{pre}_x\) 向前推最短路径上的节点,看是否能够推到 \(1\),如果最终不能够推到 \(1\) 就说明不存在从 \(1\) 到 \(n\) 的最短路径。
两种方法虽然看上去第一种的表述要多一些,但实际上这两种方法的实现程度都是不难的,因此推荐大家把两种写法都写一遍。
另外,我们也可以从这道题目中吸取一些教训:标题并不一定就决定了你的做题思路,你的做题思路应当从题面中通过思考而得出。
Code 1
const int N = 1e5 + 7, M = N << 1;
int n, m, u, v, w, cnt, fl, vis[N], h[M], ans[N], pre[N];
ll dis[N];
struct edge {int v, to, nxt;}e[M];
pq<pair<ll, int> > q;
iv a_e(int u, int v, int w) {e[++cnt] = (edge){w, v, h[u]}; h[u] = cnt;}
iv dj() {
F(i, 1, 100000) dis[i] = 1e18;
dis[1] = 0, q.push(mp(0, 1));
while(!q.empty()) {
int x = q.top().se; q.pop();
if(vis[x]) continue; vis[x] = 1;
E {
int y = e[i].to, z = e[i].v;
if(dis[y] > dis[x] + z) {
dis[y] = dis[x] + z, pre[y] = x;
q.push(mp(-dis[y], y));
}
}
}
}
int main() {
n = Rint, m = Rint;
F(i, 1, m) {
u = Rint, v = Rint, w = Rint;
a_e(u, v, w), a_e(v, u, w);
}
dj();
for(int cur = n; cur; cur = pre[cur]) ans[++ans[0]] = cur;
if(dis[n] != (ll)1e18) R(i, ans[0], 1) write(ans[i]), putchar(" \n"[i == n]);
else puts("-1");
return 0;
}
Code 2
const int N = 1e5 + 7, M = N << 1;
int n, m, u, v, w, cnt, fl, vis[N], h[M], ans[N], pre[N];
ll dis[N];
struct edge {int v, to, nxt;}e[M];
pq<pair<ll, int> > q;
iv a_e(int u, int v, int w) {e[++cnt] = (edge){w, v, h[u]}; h[u] = cnt;}
iv dj() {
F(i, 1, 100000) dis[i] = 1e18;
dis[1] = 0, q.push(mp(0, 1));
while(!q.empty()) {
int x = q.top().se; q.pop();
if(vis[x]) continue; vis[x] = 1;
E {
int y = e[i].to, z = e[i].v;
if(dis[y] > dis[x] + z) {
dis[y] = dis[x] + z, pre[y] = x;
q.push(mp(-dis[y], y));
}
}
}
}
int main() {
n = Rint, m = Rint;
F(i, 1, m) {
u = Rint, v = Rint, w = Rint;
a_e(u, v, w), a_e(v, u, w);
}
dj();
for(int cur = n; cur; cur = pre[cur]) {
ans[++ans[0]] = cur;
if(cur == 1) fl = 1;
}
if(fl) R(i, ans[0], 1) write(ans[i]), putchar(" \n"[i == n]);
else puts("-1");
return 0;
}
CF20C Dijkstra? 题解的更多相关文章
- 【算法】祭奠spfa 最短路算法dijspfa
题目链接 本题解来源 其他链接 卡spfa的数据组 题解堆优化的dijkstra 题解spfa讲解 来自以上题解的图片来自常暗踏阴 使用前向星链表存图 直接用队列优化spfa struct cmp { ...
- 【GDOI2018】所有题目和解题报告
使用说明:题意和数据范围都只是回忆内容,仅供参考.题解陆续补上. Day 1 第一题 题意:给定n个数字,要求划分成k的连续段使得每个连续段内的数字之和相同,求最大的k.n,Σai<=10^6. ...
- SCU-4527 NightMare2(Dijkstra+BFS) !!!错误题解!!!
错解警告!!! 描述 可怜的RunningPhoton又做噩梦了..但是这次跟上次不大一样,虽然他又被困在迷宫里,又被装上了一个定时炸弹,但是值得高兴的是,他发现他身边有数不清的财宝,所以他如果能带着 ...
- Newcoder Metropolis(多源最短路 + Dijkstra堆优化)题解
题目链接:https://www.nowcoder.com/acm/contest/203/I?tdsourcetag=s_pcqq_aiomsg来源:牛客网 思路:我们用用fa[i]表示距离i最近的 ...
- PAT甲题题解-1072. Gas Station (30)-dijkstra最短路
题意:从m个加油站里面选取1个站点,使得其离住宅的最近距离mindis尽可能地远,并且离所有住宅的距离都在服务范围ds之内.如果有很多相同mindis的加油站,输出距所有住宅平均距离最小的那个.如果平 ...
- PAT甲题题解-1111. Online Map (30)-PAT甲级真题(模板题,两次Dijkstra,同时记下最短路径)
题意:给了图,以及s和t,让你求s到t花费的最短路程.最短时间,以及输出对应的路径. 对于最短路程,如果路程一样,输出时间最少的. 对于最短时间,如果时间一样,输出节点数最少的. 如果最短路程 ...
- POJ 1797 Heavy Transportation(最短路&Dijkstra变体)题解
题意:给你所有道路的载重,找出从1走到n的所有路径中载重最大的,即路径最小值的最大值. 思路:和之前的POJ3268很像.我们用Dijkstra,在每次查找时,我们把最大的先拿出来,因为最大的不影响最 ...
- POJ 3268 Silver Cow Party(最短路&Dijkstra)题解
题意:有n个地点,有m条路,问从所有点走到指定点x再走回去的最短路中的最长路径 思路:用Floyd超时的,这里用的Dijkstra. Dijkstra感觉和Prim和Kruskal的思路很像啊.我们把 ...
- 【CF20C】Dijkstra?(DIJKSTRA+HEAP)
没什么可以说的 做dijk+heap模板吧 以后考试时候看情况选择SFPA和DIJKSTRA ; ..]of longint; dis:..]of int64; a:..]of int64; b:.. ...
随机推荐
- go语言并发编程
引言 说到go语言最厉害的是什么就不得不提到并发,并发是什么?,与并发相关的并行又是什么? 并发:同一时间段内执行多个任务 并行:同一时刻执行多个任务 进程.线程与协程 进程: 进程是具有一定独立功能 ...
- springboot默认Thymeleaf模板引擎js的解决方案
<script th:inline="javascript"> var btnexam=[[${btnexam}]]; console.log(btnexam); va ...
- 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)
题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...
- 【2020五校联考NOIP #2】矩阵
咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
- shell命令行——快捷键
生活在 Bash shell 中,熟记以下快捷键,将极大的提高你的命令行操作效率. 编辑命令 Ctrl + a :移到命令行首 Ctrl + e :移到命令行尾 Ctrl + f :按字符前移(右向) ...
- perl 多fasta文件匹配,并提取匹配文件第一条序列
目标如题,有多个fasta文件和一个文件名列表,将文件名列表中包含的文件匹配出来并提取第一条序列合并成一个fa文件. 这个采用perl实现,用法和代码如下: 1 #!/usr/bin/perl -w ...
- shell 基本系统维护指令
笔记 [1]man.passwd.su.echo命令的用法 (1)获取联机帮助 1)使用man命令可以找到特定的联机帮助页,并提供简短的命令说明.一般语法格式为: man commandname 2) ...
- kubernetes部署kube-controller-manager服务
本文档介绍部署高可用 kube-controller-manager 集群的步骤. 该集群包含 3 个节点,启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态.当 leader ...
- hbase参数调优
@ 目录 HBase参数调优 hbase.regionserver.handler.count hbase.hregion.max.filesize hbase.hregion.majorcompac ...