题意:

     x^z + y^z + x*y*z = k; (x < y ,z > 1),给你一个k问有多少组解.

思路:

     
 暴力枚举z,y,然后二分查找x.注意一点最好用快速幂,别用pow,不然有可能会超时,如果先把z=2的处理了会快一点.应该会0ms.....


#include<stdio.h>

__int64
quickp(__int64 a,__int64 n)
{
__int64
aa=1;
while(
n)
{
if(
n&1)
aa*=a;
a*=a;
n>>=1;
}
return
aa;
} int main ()
{
__int64
x ,y ,z ,i ,j ,k;
__int64
low ,up ,mid;
while(~
scanf("%I64d" ,&k) && k)
{
__int64
sum = 0;
for(
z = 2 ;z <= 31 ;z ++)
{
for(
y = 2 ;y <= 46341 ;y ++)
{
if(
quickp(y ,z) > k) break;
low = 1;
up = y-1;
__int64
mk = 0;
while(
low <= up)
{

mid = (low + up) / 2;
if(
quickp(mid ,z) + quickp(y ,z) + mid*y*z >= k)
{

up = mid - 1;
mk = mid;
}
else

low = mid + 1;
}
if(
quickp(mk ,z) + quickp(y ,z) + mk*y*z == k)
sum ++;
}
}

printf("%I64d\n" ,sum);
}
return
0;
}



												

hdu4282 x^z+y^z+x*y*z=k 解的个数的更多相关文章

  1. 给定表达式[x/2] + y + x * y, 其中x,y都是正整数。

    改进了一下,不过还是要十多秒吧. package com.boco.study; import java.math.BigDecimal; import java.util.Calendar; imp ...

  2. x+y = ((x&y)<<1) + (x^y) 证明

    法一:我们考虑x,y在二进制表示时候,按位相加其中第i位xi+yi = ((xi&yi)<<1) + (xi^yi)其中(xi&yi)<<1表示当xi和yi都是 ...

  3. 设 $y_1(x), y_2(x)$ 是 $y''+p(x)y'+q(x)y=0$ 的两个解 ($p(x), q(x)$ 连续), 且 $y_1(x_0)=y_2(x_0)=0$, $y_1(x)\not\equiv 0$. 试证: $y_1(x)$, $y_2(x)$ 线性相关.

    设 $y_1(x), y_2(x)$ 是 $y''+p(x)y'+q(x)y=0$ 的两个解 ($p(x), q(x)$ 连续), 且 $y_1(x_0)=y_2(x_0)=0$, $y_1(x)\n ...

  4. X分钟速成Y (其中Y=Python3)

    # 用井字符开头的是单行注释 """ 多行字符串用三个引号 包裹,也常被用来做多 行注释 """ ##################### ...

  5. hdu6055 Regular polygon 脑洞几何 给定n个坐标(x,y)。x,y都是整数,求有多少个正多边形。因为点都是整数点,所以只可能是正四边形。

    /** 题目:hdu6055 Regular polygon 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6055 题意:给定n个坐标(x,y).x,y都 ...

  6. Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1

    /** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...

  7. vifx.y-emu 和 vifx.y 和 tapx.y

    xen 启动虚拟机后,domain0 可以看到虚拟网卡设备,但是有几种显示 tapx.y , vifx.y 或者 vifx.y-emu . 在我的实验里,同样的配置,如 vif = ["ty ...

  8. hdu 5974 A Simple Math Problem gcd(x,y)=gcd((x+y),lcm(x,y))

    题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)= ...

  9. 从数组中取出n个不同的数组成子集 y 使 x = Σy

    /**  * 尝试获取arr子集 y  使 x=Σy  * @param {Array} arr   * @param {number} x   * @param {Array} res   */ f ...

随机推荐

  1. Hi3559AV100外接UVC/MJPEG相机实时采图设计(一):Linux USB摄像头驱动分析

    下面将给出Hi3559AV100外接UVC/MJPEG相机实时采图设计的整体流程,主要实现是通过V4L2接口将UVC/MJPEG相机采集的数据送入至MPP平台,经过VDEC.VPSS.VO最后通过HD ...

  2. 话说 wait、notify 、 notifyAll

    一.前言 说起java的线程之间的通信,难免会想起它,他就是 wait .notify.notifyAll 他们三个都是Object类的方法, 受到 final 和 native 加持 ,也就造就了他 ...

  3. 381. O(1) 时间插入、删除和获取随机元素 - 允许重复

    381. O(1) 时间插入.删除和获取随机元素 - 允许重复 LeetCode_381 题目详情 题解分析 代码实现 package com.walegarrett.interview; impor ...

  4. 剑指 Offer 43. 1~n 整数中 1 出现的次数 + 数位模拟 + 思维

    剑指 Offer 43. 1-n 整数中 1 出现的次数 Offer_43 题目描述 题解分析 java代码 package com.walegarrett.offer; /** * @Author ...

  5. Webpack 基石 tapable 揭秘

    Webpack 基于 tapable 构建了其复杂庞大的流程管理系统,基于 tapable 的架构不仅解耦了流程节点和流程的具体实现,还保证了 Webpack 强大的扩展能力:学习掌握tapable, ...

  6. Python爬虫学习一------HTTP的基本原理

    昨天刚买的崔大大的<Python3网络爬虫开发实战>,今天就到了,开心的读完了爬虫基础这一章,现记录下自己的浅薄理解,如有见解不到位之处,望指出. 1.HTTP的基本原理 ①我们经常会在浏 ...

  7. Java8 BiFunction 简单用用

    最近来了新公司,主要用到了ElasitcSearch,大家都知道在底层查询代码中往往需要判断传入某个参数是否为空来判断设置查询,例如下方代码: BoolQueryBuilder query = Que ...

  8. Spring如何解决循环依赖

    一.什么是循环依赖 多个bean之间相互依赖,形成了一个闭环. 比如:A依赖于B.B依赖于c.c依赖于A 通常来说,如果问spring容器内部如何解决循环依赖, 一定是指默认的单例Bean中,属性互相 ...

  9. 输出质数(Java)

    输出质数 一.什么是质数 质数又称素数.一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,否则称为合数(规定1既不是质数也不是合数). 二.代码实现 1.输出100以内的质数 i ...

  10. springMVC:校验框架:多规则校验,嵌套校验,分组校验;ssm整合技术

    知识点梳理 课堂讲义 学习目标 能够阐述表单验证的分类和区别 能够运用表单验证的常用注解 能够编写表单验证的示例 能够编写SSM整合的应用案例 能够总结SSM整合的步骤 1 校验框架 1.1 入门-视 ...