C. Propagating tree
2 seconds
256 megabytes
standard input
standard output
Iahub likes trees very much. Recently he discovered an interesting tree named propagating tree. The tree consists of n nodes numbered from 1 to n, each node i having an initial value ai. The root of the tree is node 1.
This tree has a special property: when a value val is added to a value of node i, the value -val is added to values of all the children of node i. Note that when you add value -val to a child of node i, you also add -(-val) to all children of the child of node i and so on. Look an example explanation to understand better how it works.
This tree supports two types of queries:
- "1 x val" — val is added to the value of node x;
- "2 x" — print the current value of node x.
In order to help Iahub understand the tree better, you must answer m queries of the preceding type.
The first line contains two integers n and m (1 ≤ n, m ≤ 200000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000). Each of the next n–1 lines contains two integers vi and ui (1 ≤ vi, ui ≤ n), meaning that there is an edge between nodes vi and ui.
Each of the next m lines contains a query in the format described above. It is guaranteed that the following constraints hold for all queries: 1 ≤ x ≤ n, 1 ≤ val ≤ 1000.
For each query of type two (print the value of node x) you must print the answer to the query on a separate line. The queries must be answered in the order given in the input.
5 5
1 2 1 1 2
1 2
1 3
2 4
2 5
1 2 3
1 1 2
2 1
2 2
2 4
3
3
0
The values of the nodes are [1, 2, 1, 1, 2] at the beginning.
Then value 3 is added to node 2. It propagates and value -3 is added to it's sons, node 4 and node 5. Then it cannot propagate any more. So the values of the nodes are [1, 5, 1, - 2, - 1].
Then value 2 is added to node 1. It propagates and value -2 is added to it's sons, node 2 and node 3. From node 2 it propagates again, adding value 2 to it's sons, node 4 and node 5. Node 3 has no sons, so it cannot propagate from there. The values of the nodes are [3, 3, - 1, 0, 1].
You can see all the definitions about the tree at the following link: http://en.wikipedia.org/wiki/Tree_(graph_theory)
思路:dfs序+线段树;
首先dfs序映射一下,然后转换成然后线段树维护,新然后开两个数组,一个作为正一个作为负。
复杂度n×log(n);
1 #include<stdio.h>
2 #include<algorithm>
3 #include<queue>
4 #include<stdlib.h>
5 #include<iostream>
6 #include<string.h>
7 #include<set>
8 #include<map>
9 #include<vector>
10 using namespace std;
11 typedef long long LL;
12 int ans[200005];
13 int id[200005];
14 int a[200005];
15 typedef vector<int> Ve;
16 vector<Ve>vec(200005);
17 bool flag[200005];
18 int cn = 0;
19 int l[200005];
20 int r[200005];
21 void dfs(int n,int p);
22 int tree1[200005*4];
23 int tree2[4*200005];
24 void update(int x,int n,int c);
25 int ask(int x);
26 int jiou[200005];
27 void update(int l,int r,int k,int nn,int mm,int co,int p)
28 {
29 if(l > mm||r < nn)
30 {
31 return ;
32 }
33 else if(l <= nn&& r >= mm)
34 {
35 if(p%2)tree1[k]+=co;
36 else tree2[k]+=co;
37 return ;
38 }
39 else
40 {
41 update(l,r,2*k+1,nn,(nn+mm)/2,co,p);
42 update(l,r,2*k+2,(nn+mm)/2+1,mm,co,p);
43 }
44 }
45 int ask1(int l,int r,int k,int nn,int mm)
46 {
47 if(l > mm || r < nn)
48 return 0;
49 else if(l <= nn&&r >= mm)
50 {
51 return tree1[k];
52 }
53 else
54 {
55 tree1[2*k+1] += tree1[k];
56 tree1[2*k+2] += tree1[k];
57 tree1[k] = 0;
58 int nx = ask1(l,r,2*k+1,nn,(nn+mm)/2);
59 int ny = ask1(l,r,2*k+2,(nn+mm)/2+1,mm);
60 return nx + ny;
61 }
62 }
63 int ask2(int l,int r,int k,int nn,int mm)
64 {
65 if(l > mm || r < nn)
66 return 0;
67 else if(l <= nn&&r >= mm)
68 {
69 return tree2[k];
70 }
71 else
72 {
73 tree2[2*k+1] += tree2[k];
74 tree2[2*k+2] += tree2[k];
75 tree2[k] = 0;
76 int nx = ask2(l,r,2*k+1,nn,(nn+mm)/2);
77 int ny = ask2(l,r,2*k+2,(nn+mm)/2+1,mm);
78 return nx + ny;
79 }
80 }
81 int main(void)
82 {
83 int n,m;
84 scanf("%d %d",&n,&m);
85 for(int i = 1; i <= n; i++)
86 {
87 scanf("%d",&a[i]);
88 }
89 for(int i = 1; i < n; i++)
90 {
91 int x,y;
92 scanf("%d %d",&x,&y);
93 vec[x].push_back(y);
94 vec[y].push_back(x);
95 }
96 dfs(1,1);
97 for(int i = 1; i <= n; i++)
98 id[ans[i]] = i;
99 while(m--)
100 {
101 int val;
102 int co,ic;
103 scanf("%d %d",&val,&ic);
104 if(val == 1)
105 {
106 scanf("%d",&co);
107 update(l[ic],r[ic],0,1,cn,co,jiou[ic]);
108 }
109 else
110 {
111 int xx = ask1(id[ic],id[ic],0,1,cn);
112 int yy = ask2(id[ic],id[ic],0,1,cn);
113 //printf("%d\n",xx);
114 if(jiou[ic]%2)
115 {
116 printf("%d\n",xx-yy+a[ic]);
117 }
118 else printf("%d\n",yy-xx+a[ic]);
119 }
120 }
121 return 0;
122 }
123 void dfs(int n,int p)
124 {
125 flag[n] = true;
126 ans[++cn] = n;
127 l[n] = cn;
128 jiou[n] = p;
129 for(int i = 0; i < vec[n].size(); i++)
130 {
131 int x = vec[n][i];
132 if(!flag[x])
133 dfs(x,p+1);
134 }
135 r[n] = cn;
136 }
C. Propagating tree的更多相关文章
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树
题目链接:点击传送 E. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- AC日记——Propagating tree Codeforces 383c
C. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CodeForces 383C Propagating tree
Propagating tree Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- 题解 CF383C 【Propagating tree】
这道题明明没有省选难度啊,为什么就成紫题了QAQ 另:在CF上A了但是洛谷Remote Judge玄学爆零. 思路是DFS序+线段树. 首先这道题直观上可以对于每一次修改用DFS暴力O(n),然后对于 ...
- codeforces 383C Propagating tree 线段树
http://codeforces.com/problemset/problem/383/C 题目就是说, 给一棵树,将一个节点的值+val, 那么它的子节点都会-val, 子节点的子节点+val. ...
- Codeforces 383C . Propagating tree【树阵,dfs】
标题效果: 有一棵树,有两种操作模式对本树:1:表示为(1 x val),在NOx加在节点上val,然后x每个节点加上儿子- val.给每个儿子一个儿子在一起-(- val),加到没有儿子为止.2:表 ...
- CodeForces 384E Propagating tree (线段树+dfs)
题意:题意很简单么,给定n个点,m个询问的无向树(1为根),每个点的权值,有两种操作, 第一种:1 x v,表示把 x 结点加上v,然后把 x 的的子结点加上 -v,再把 x 的子结点的子结点加上 - ...
随机推荐
- LATEX公式语法
see how any formula was written in any question or answer, including this one, right-click on the ex ...
- 日常Java 2021/10/28
Java lterator Java lterator(迭代器)不是一个集合,它是一种用于访问集合的方法,可用于迭代 ArrayList和HashSet等集合.lterator是Java迭代器最简单的 ...
- 【STM8】STM8S介绍(编程环境、烧录、芯片内容)(Vcap需要一个电容接地)
这篇博客的介绍大纲 [1]我使用的开发板和烧录器 [2]编程环境 [3]烧录软件和界面 [4]芯片内容 [1]我使用的开发板和烧录器 首先,我用的是STM8S003F3P6这款开发板,淘宝上就有了,5 ...
- 100个Shell脚本——【脚本7】批量建立用户
[脚本7]批量建立用户 编写shell脚本,批量建立用户user_00, user_01, ... user_100并且所有用户同属于users组. 一.脚本 #!/bin/bash group=`c ...
- c学习 - 算法
简介: 一个程序包括两方面内容:数据结构.算法 数据结构:对数据的描述,包括数据的类型和数据的组织形式 算法:对操作的描述,即操作步骤 (程序=算法+数据结构) 算法是灵魂,数据结构是加工对象,语言是 ...
- vue页面常用方法
输入框事件监听(三):blur与change的差异 iview 验证 trigger: 'blur,change', 同时加两个,省的每次还想input 还是 select 4.加载:Loading ...
- Linux基础命令---apachectl
apachectl apachectl指令是apache http服务器的前端控制程序,可以协助控制apache服务的守护进程httpd. 此命令的适用范围:RedHat.RHEL.Ubuntu.Ce ...
- Linux系统分区及挂载点
一.关于Linux的分区情况 虽然硬盘分区表中最多能存储四个分区,但我们实际使用时一般只分为两个分区,一个是主分区(Primary Partion)一个是扩展分区(extended partition ...
- mysql之join浅析
1.可以使用join吗?使用join有什么问题呢?-- >超过3个表不使用join,笛卡尔积问题 -->这些问题是怎么造成的呢? 如果可以使用 Index Nested-Loop Join ...
- 【Service】【Web】【Middleware】Tomcat
1. 概念 1.1. 官方网站:tomcat.apache.org 1.2. tomcat的组件 <Server> <Service> <Connector/> & ...