Solution -「Gym 102956A」Belarusian State University
\(\mathcal{Description}\)
Link.
给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元加法 \(\oplus_i:\{0,1\}\times\{0,1\}\rightarrow\{0,1\}\),而对于两个整数 \(u,v\in[0,2^n)\),定义 \(u\oplus v=\sum_{i=0}^{n-1}(u_i\oplus_i v_i)2^i\)。求 \(A,B\) 的 \(\oplus\) 卷积,保证答案任意系数不超过 \(2^{63}-1\)。
\(\mathcal{Solution}\)
可以看出这个问题不弱于 FWT,所以我们大概需要根据 FWT 的思路,来 DIY 一个变换。
在 FWT 的框架下,枚举每个二进制位,对 \(16\) 种不同的加法分别构造各自的变换方式,构造时只需要考虑 \((a_0+a_1x)\) 与 \((b_0+b_1x)\) 的卷积,使得这个卷积合法即可。
复杂度 \(\mathcal O(2^nn)\)。
\(\mathcal{Code}\)
不要用 switch!不要用 switch!不要用 switch!这个语法真的离谱。
啊……极少地在代码里爆了粗口,以记录我分类讨论加上被 switch 弄傻的愉悦!(
/*~Rainybunny~*/
#include <cstdio>
#include <cassert>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
const int MAXN = 18, MAXL = 1 << MAXN;
int n;
LL a[MAXL + 5], b[MAXL + 5];
char op[MAXN + 5][4];
inline int type( const char* o ) {
int ret = 0;
per ( i, 3, 0 ) ret = ret << 1 | ( o[i] ^ '0' );
return ret;
}
inline void fuckin_wa_tle( const int len, LL* u, const int tp ) {
// { -1: first item, 0: result, 1: second item }.
#define swp( a, b ) void( a ^= b ^= a ^= b )
for ( int i = 0, stp = 1; stp < len; ++i, stp <<= 1 ) {
for ( int j = 0; j < len; j += stp << 1 ) {
rep ( k, j, j + stp - 1 ) {
LL &p = u[k], &q = u[k + stp];
switch ( type( op[i] ) ) {
// what fuckin stupid grammar??? I'll never `switch` again.
case 0:
if ( !~tp ) p += q, q = 0;
else if ( tp ) p += q, q = 0;
break;
case 1:
if ( !~tp ) swp( p, q ), p += q;
else if ( tp ) swp( p, q ), p += q;
else p -= q;
break;
case 2:
if ( !~tp ) swp( p, q ), p += q;
else if ( tp ) p += q;
else p -= q;
break;
case 3:
if ( !~tp ) swp( p, q );
else if ( tp ) p = q = p + q;
break;
case 4:
if ( !~tp ) p += q;
else if ( tp ) swp( p, q ), p += q;
else p -= q;
break;
case 5:
if ( !~tp ) p = q = p + q;
else if ( tp == 1 ) swp( p, q );
break;
case 6:
p += q, q = p - 2 * q;
if ( !tp ) {
assert( !( p % 2 ) && !( q % 2 ) );
p /= 2, q /= 2;
}
break;
case 7:
if ( !~tp ) swp( p, q ), q += p;
else if ( tp ) swp( p, q ), q += p;
else q -= p;
break;
case 8:
if ( !~tp ) p += q;
else if ( tp ) p += q;
else p -= q;
break;
case 9:
q += p, p = q - 2 * p;
if ( !tp ) {
assert( !( p % 2 ) && !( q % 2 ) );
p /= 2, q /= 2;
}
break;
case 10:
if ( !~tp ) p = q = p + q;
break;
case 11:
if ( !~tp ) swp( p, q ), q += p;
else if ( tp ) q += p;
else q -= p;
break;
case 12:
if ( tp == 1 ) p = q = p + q;
break;
case 13:
if ( !~tp ) q += p;
else if ( tp ) swp( p, q ), q += p;
else q -= p;
break;
case 14:
if ( !~tp ) q += p;
else if ( tp ) q += p;
else q -= p;
break;
case 15:
if ( !~tp ) q += p, p = 0;
else if ( tp ) q += p, p = 0;
break;
default: assert( false );
}
}
}
}
#undef swp
}
int main() {
scanf( "%d", &n );
rep ( i, 0, n - 1 ) scanf( "%s", op[i] );
rep ( i, 0, ( 1 << n ) - 1 ) scanf( "%lld", &a[i] );
rep ( i, 0, ( 1 << n ) - 1 ) scanf( "%lld", &b[i] );
fuckin_wa_tle( 1 << n, a, -1 ), fuckin_wa_tle( 1 << n, b, 1 );
rep ( i, 0, ( 1 << n ) - 1 ) a[i] *= b[i];
fuckin_wa_tle( 1 << n, a, 0 );
rep ( i, 0, ( 1 << n ) - 1 ) {
printf( "%lld%c", a[i], i < repi ? ' ' : '\n' );
}
return 0;
}
Solution -「Gym 102956A」Belarusian State University的更多相关文章
- Solution -「Gym 102979E」Expected Distance
\(\mathcal{Description}\) Link. 用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...
- Solution -「Gym 102979L」 Lights On The Road
\(\mathcal{Description}\) Link. 给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Solution -「Gym 102956B」Beautiful Sequence Unraveling
\(\mathcal{Description}\) Link. 求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...
- Solution -「Gym 102956F」Border Similarity Undertaking
\(\mathcal{Description}\) Link. 给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...
- Solution -「Gym 102798I」Sean the Cuber
\(\mathcal{Description}\) Link. 给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数. 数据组数 \(T\le2.5\times10^5\). ...
- Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\) Link. 给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...
- Solution -「Gym 102798E」So Many Possibilities...
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...
- Solution -「Gym 102759I」Query On A Tree 17
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...
随机推荐
- CentOS 7安装Etherpad(在线协作编辑)
Etherpad 是一个线上共制平台,是基于网络的实时合作文档编辑器,三.四个人可以坐在自己电脑前,同时对一份文档修改,也同时能看到其他人的修改. CentOS 7 安装 Etherpad 1.先安装 ...
- Tomcat8/9的catalina.out中文乱码问题解决
OS: Red Hat Enterprise Linux Server release 7.8 (Maipo) Tomcat: 9 中文显示为???问号 在$CATALINA_HOME/conf下的l ...
- 使用 Jenkins + Ansible 实现 Spring Boot 自动化部署101
本文要点:设计一条 Spring Boot 最基本的流水线:包括构建.制品上传.部署.使用 Docker 容器运行构建逻辑.自动化整个实验环境:包括 Jenkins 的配置,Jenkins agent ...
- eclipse中配置Webdriver
安装JDK,配置好Java环境 下载Eclipse,并完成安装 下载Webdriver的JAR文件(访问Selenium官网,下载Java版的zip文件,并且解压到本地磁盘,解压后文件夹内容如下图:) ...
- JAVA并发-AQS知识笔记
概述 AQS是AbstractQueuedSynchronizer的缩写,翻译成中文就是抽象队列同步器,AbstractQueuedSynchronizer这个类也是在java.util.concur ...
- Sentry 开发者贡献指南 - Django Rest Framework(Serializers)
Serializer 用于获取复杂的 python 模型并将它们转换为 json.序列化程序还可用于在验证传入数据后将 json 反序列化回 Python 模型. 在 Sentry,我们有两种不同类型 ...
- [CAN波形分析] 一次CAN波形分析之旅
Prepare CAN通信协议使用了有一段时间了,但都是基于软件层面的使用,对于其波形不是很了解,正好这段时间比较闲,是时候补补硬知识. 开始之前,先介绍一下设备: 咸鱼淘来的古董级别示波器GDS-2 ...
- Book of the Dead 死者之书Demo工程回顾与学习
1.前言 一转眼离Book of the Dead Environment Demo开放下载已过去多年,当时因为技术力有限,以及对HDRP理解尚浅, 所以这篇文章一直搁浅到了现在.如今工作重心已转向U ...
- 推荐召回--基于物品的协同过滤:ItemCF
目录 1. 前言 2. 原理&计算&改进 3. 总结 1. 前言 说完基于用户的协同过滤后,趁热打铁,我们来说说基于物品的协同过滤:"看了又看","买了又 ...
- ipython notebook教程
一.简介 Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含代码.方程式.可视化和文本的文档.它的用途包括:数据清理和转换.数值模拟.统计建模.数据可视化.机器学习等等 ...