\(\mathcal{Description}\)

  Link.

  给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元加法 \(\oplus_i:\{0,1\}\times\{0,1\}\rightarrow\{0,1\}\),而对于两个整数 \(u,v\in[0,2^n)\),定义 \(u\oplus v=\sum_{i=0}^{n-1}(u_i\oplus_i v_i)2^i\)。求 \(A,B\) 的 \(\oplus\) 卷积,保证答案任意系数不超过 \(2^{63}-1\)。

\(\mathcal{Solution}\)

  可以看出这个问题不弱于 FWT,所以我们大概需要根据 FWT 的思路,来 DIY 一个变换。

  在 FWT 的框架下,枚举每个二进制位,对 \(16\) 种不同的加法分别构造各自的变换方式,构造时只需要考虑 \((a_0+a_1x)\) 与 \((b_0+b_1x)\) 的卷积,使得这个卷积合法即可。

  复杂度 \(\mathcal O(2^nn)\)。

\(\mathcal{Code}\)

  不要用 switch!不要用 switch!不要用 switch!这个语法真的离谱。

  啊……极少地在代码里爆了粗口,以记录我分类讨论加上被 switch 弄傻的愉悦!(

/*~Rainybunny~*/

#include <cstdio>
#include <cassert> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; const int MAXN = 18, MAXL = 1 << MAXN;
int n;
LL a[MAXL + 5], b[MAXL + 5];
char op[MAXN + 5][4]; inline int type( const char* o ) {
int ret = 0;
per ( i, 3, 0 ) ret = ret << 1 | ( o[i] ^ '0' );
return ret;
} inline void fuckin_wa_tle( const int len, LL* u, const int tp ) {
// { -1: first item, 0: result, 1: second item }.
#define swp( a, b ) void( a ^= b ^= a ^= b )
for ( int i = 0, stp = 1; stp < len; ++i, stp <<= 1 ) {
for ( int j = 0; j < len; j += stp << 1 ) {
rep ( k, j, j + stp - 1 ) {
LL &p = u[k], &q = u[k + stp];
switch ( type( op[i] ) ) {
// what fuckin stupid grammar??? I'll never `switch` again.
case 0:
if ( !~tp ) p += q, q = 0;
else if ( tp ) p += q, q = 0;
break;
case 1:
if ( !~tp ) swp( p, q ), p += q;
else if ( tp ) swp( p, q ), p += q;
else p -= q;
break;
case 2:
if ( !~tp ) swp( p, q ), p += q;
else if ( tp ) p += q;
else p -= q;
break;
case 3:
if ( !~tp ) swp( p, q );
else if ( tp ) p = q = p + q;
break;
case 4:
if ( !~tp ) p += q;
else if ( tp ) swp( p, q ), p += q;
else p -= q;
break;
case 5:
if ( !~tp ) p = q = p + q;
else if ( tp == 1 ) swp( p, q );
break;
case 6:
p += q, q = p - 2 * q;
if ( !tp ) {
assert( !( p % 2 ) && !( q % 2 ) );
p /= 2, q /= 2;
}
break;
case 7:
if ( !~tp ) swp( p, q ), q += p;
else if ( tp ) swp( p, q ), q += p;
else q -= p;
break;
case 8:
if ( !~tp ) p += q;
else if ( tp ) p += q;
else p -= q;
break;
case 9:
q += p, p = q - 2 * p;
if ( !tp ) {
assert( !( p % 2 ) && !( q % 2 ) );
p /= 2, q /= 2;
}
break;
case 10:
if ( !~tp ) p = q = p + q;
break;
case 11:
if ( !~tp ) swp( p, q ), q += p;
else if ( tp ) q += p;
else q -= p;
break;
case 12:
if ( tp == 1 ) p = q = p + q;
break;
case 13:
if ( !~tp ) q += p;
else if ( tp ) swp( p, q ), q += p;
else q -= p;
break;
case 14:
if ( !~tp ) q += p;
else if ( tp ) q += p;
else q -= p;
break;
case 15:
if ( !~tp ) q += p, p = 0;
else if ( tp ) q += p, p = 0;
break;
default: assert( false );
}
}
}
}
#undef swp
} int main() {
scanf( "%d", &n );
rep ( i, 0, n - 1 ) scanf( "%s", op[i] );
rep ( i, 0, ( 1 << n ) - 1 ) scanf( "%lld", &a[i] );
rep ( i, 0, ( 1 << n ) - 1 ) scanf( "%lld", &b[i] ); fuckin_wa_tle( 1 << n, a, -1 ), fuckin_wa_tle( 1 << n, b, 1 );
rep ( i, 0, ( 1 << n ) - 1 ) a[i] *= b[i];
fuckin_wa_tle( 1 << n, a, 0 ); rep ( i, 0, ( 1 << n ) - 1 ) {
printf( "%lld%c", a[i], i < repi ? ' ' : '\n' );
}
return 0;
}

Solution -「Gym 102956A」Belarusian State University的更多相关文章

  1. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  2. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  3. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  4. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  5. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  6. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  7. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  8. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

  9. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

随机推荐

  1. kubernetes 之部署metrics-server

    Kubernetes 版本是 1.14 # kubectl version --short Client Version: v1.14.3 Server Version: v1.14.2 下载文件 f ...

  2. PPT变为gif效果

    原文链接:https://www.toutiao.com/i6496812863263343117/ 首先我们点击"文件按钮" 在下拉列表中选择"另存为" 在& ...

  3. react 网址导航

    项目搭建 使用webpack.babel.react.antdesign配置单页面应用开发环境

  4. 基于Typescript和Jest刷题环境搭建与使用

    写在前面 前几个月在公司用vue3和ts写项目,想巩固一下基础,于是我想起了去年基于JavaScript和Jest搭建的刷题环境,不如,给它搞个加强版,结合Typescript和Jest 搞一个刷题环 ...

  5. MySQL数据库学习打卡 DAY2

    今天学习了MySQL的DML操作,完成了关于增删改查所有基本内容的学习.

  6. 使用Cesium Stories来可视化时序数据

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Cesium可以用来可视化随时间变化的数据,无论是跨越数百年的地 ...

  7. strace -cp 诊断

    strace -c php do.php 各项含义如下: - % time:执行耗时占总时间百分比 - seconds:执行总时间 - usecs/call:单个命令执行时间 - calls:调用次数 ...

  8. Linux中date命令用法

    1.以下是服务器现在的时间,当前时间的各种表示方法,表示成自己想要的时间格式,后面的范例将会在这个时间基础之上进行演示,同时这也是熟练掌握后面各种date命令的前提,请读者注意 [root@RHEL6 ...

  9. 计算机电子书 2019 BiliDrive 备份

    下载方式 pip install BiliDriveEx bdex download <link> 链接 文档 链接 传智播客轻松搞定系列 C.C++.Linux.设计模式.7z (33. ...

  10. JVM 问题分析思路

    1. 前言 工作中有可能遇到 java.lang.OutOfMemoryError: Java heap space 内存溢出异常, 本文提供一些内存溢出的分析及解决问题的思路. 常见异常如下: 20 ...