首先,我们要用到期望的一个性质:

对于两个随机变量$X$和$Y$(不需要相互独立),有$E(X+Y)=E(X)+E(Y)$

另外,对于一个仙人掌,令$n$为点数,$m$为边数,$c$为简单环个数,$X$为连通块数,则$X=n-(m-c)$(环可以看作有一条无意义的边,对于森林点-边即为连通块数)

我们所求的即$E((X-E(X))^{2})$,将其展开即$E(X^{2})-E(X)^{2}$,后者$E(X)=E(n)-E(m)+E(c)$,以下以$E(m)$为例来考虑:

令$x_{1},x_{2},...,x_{m}$表示每一条边是否被存在,即若其存在则$x_{i}=1$,否则$x_{i}=0$

显然$m=\sum_{i=1}^{m}x_{i}$,根据性质1,即$E(m)=\sum_{i=1}^{m}E(x_{i})=\frac{m}{4}$

类似地,有$E(n)=\frac{n}{2}$以及$E(c)=\sum_{环}\frac{1}{2^{环上点数}}$

对于$E(X^{2})$,将其展开即$E(X^{2})=E(n^{2})+E(m^{2})+E(c^{2})-2E(nm)+2E(nc)-2E(mc)$,以下同样以$2E(mc)$为例来考虑:

令$x_{1},x_{2},...,x_{m}$与之前相同,再定义$y_{1},y_{2},...,y_{c}$(其中$c$为环数)来表示每一个环是否存在(存在为1,不存在为0),则$E(mc)=E(\sum_{i=1}^{m}x_{i}\sum_{j=1}^{c}y_{j})$

同样利用性质1展开,也就是$\sum_{i=1}^{m}\sum_{j=1}^{c}E(x_{i}y_{j})$,不难发现$E(x_{i}y_{j})=P(第i条边和第j个环同时存在)$,后者也就是第$i$条边和第$j$个环同时覆盖了多少个点的2的幂次

简单对交点数分类讨论即可,时间复杂度可以通过预处理2幂次的逆元来做到严格线性,另外由于每一条边至多被覆盖一次,可以暴力枚举所有环上所有点

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 #define mod 1000000007
5 struct Edge{
6 int nex,to;
7 }edge[N<<1];
8 vector<pair<int,int> >v;
9 int E,n,m,x,y,inv[N],head[N],r[N],dfn[N],f[N],dep[N],sum[N];
10 int En,Em,Ec,En2,Em2,Ec2,Enm,Enc,Emc,EX,EX2,ans;
11 void add(int x,int y){
12 edge[E].nex=head[x];
13 edge[E].to=y;
14 head[x]=E++;
15 }
16 void dfs(int k,int fa,int s){
17 dfn[k]=++dfn[0];
18 f[k]=fa;
19 dep[k]=s;
20 for(int i=head[k];i!=-1;i=edge[i].nex)
21 if (edge[i].to!=fa){
22 if (!dfn[edge[i].to])dfs(edge[i].to,k,s+1);
23 else{
24 if (dep[edge[i].to]>=s)continue;
25 int l=s-dep[edge[i].to]+1;
26 Ec=(Ec+inv[l])%mod;
27 Enc=(Enc+1LL*(n-l)*inv[l+1]+1LL*l*inv[l])%mod;
28 int s_same=l;
29 for(int j=k;;j=f[j]){
30 s_same=s_same+r[j]-2;
31 sum[j]=(sum[j]+inv[l])%mod;
32 if (j==edge[i].to)break;
33 }
34 Emc=(Emc+1LL*(m-s_same)*inv[l+2]+1LL*(s_same-l)*inv[l+1]+1LL*l*inv[l])%mod;
35 sum[0]=(sum[0]+inv[l])%mod;
36 v.push_back(make_pair(k,edge[i].to));
37 }
38 }
39 }
40 int main(){
41 inv[0]=1;
42 for(int i=1;i<N;i++)inv[i]=1LL*(mod+1)/2*inv[i-1]%mod;
43 scanf("%d%d",&n,&m);
44 memset(head,-1,sizeof(head));
45 for(int i=1;i<=m;i++){
46 scanf("%d%d",&x,&y);
47 add(x,y);
48 add(y,x);
49 r[x]++,r[y]++;
50 }
51 En=1LL*n*inv[1]%mod;
52 Em=1LL*m*inv[2]%mod;
53 En2=(1LL*n*(n-1)%mod*inv[2]+1LL*n*inv[1])%mod;
54 Enm=(1LL*m*(n-2)%mod*inv[3]+2LL*m*inv[2])%mod;
55 for(int i=1;i<=n;i++)
56 for(int j=head[i];j!=-1;j=edge[j].nex){
57 x=i,y=edge[j].to;
58 if (x<y)Em2=(Em2+1LL*(m-r[x]-r[y]+1)*inv[4]+1LL*(r[x]+r[y]-2)*inv[3]%mod+inv[2])%mod;
59 }
60 dfs(1,0,0);
61 for(int i=0;i<v.size();i++){
62 x=v[i].first,y=v[i].second;
63 int l=dep[x]-dep[y]+1,s_same=inv[l];
64 for(int j=x;;j=f[j]){
65 s_same=((s_same+sum[j]-inv[l])%mod+mod)%mod;
66 if (j==y)break;
67 }
68 Ec2=(Ec2+1LL*(sum[0]+mod-s_same)*inv[l]+1LL*(s_same+mod-inv[l])*inv[l-1]+inv[l])%mod;
69 }
70 EX=((0LL+En-Em+Ec)%mod+mod)%mod;
71 EX2=((0LL+En2+Em2+Ec2-2*Enm+2*Enc-2*Emc)%mod+mod)%mod;
72 ans=(EX2-1LL*EX*EX%mod+mod)%mod;
73 printf("%d",ans);
74 }

[cf1236F]Alice and the Cactus的更多相关文章

  1. Codeforces 1236F - Alice and the Cactus(期望+分类讨论)

    Codeforces 题面传送门 & 洛谷题面传送门 期望好题. 首先拆方差: \[\begin{aligned} &E((x-E(x))^2)\\ =&E(x^2)-2E(x ...

  2. (HDU 5558) 2015ACM/ICPC亚洲区合肥站---Alice's Classified Message(后缀数组)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5558 Problem Description Alice wants to send a classi ...

  3. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  4. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  5. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

  6. 阿里前端框架Alice是个不错的选择

    BootStrap虽然用户群体广大,其整体风格尽管有不少skin可选,但以国情来看还是不好看. 阿里开源的前端框架,个人觉得还是很不错,Alice处处透着支付宝中界面风格的气息,电商感挺强. 以下内容 ...

  7. poj 1698 Alice‘s Chance

    poj 1698  Alice's Chance 题目地址: http://poj.org/problem?id=1698 题意: 演员Alice ,面对n场电影,每场电影拍摄持续w周,每周特定几天拍 ...

  8. Alice and Bob 要用到辗转相减

    Alice and BobTime Limit: 1 Sec  Memory Limit: 64 MBSubmit: 255  Solved: 43 Description Alice is a be ...

  9. Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA

    E. Cactus   A connected undirected graph is called a vertex cactus, if each vertex of this graph bel ...

随机推荐

  1. 41 位 Contributor 参与,1574 个 PR,不容错过的版本更新!

    6 月 25 日,在商业公司 SphereEx 正式成立一月之余的今天,我们很高兴的宣布 Apache ShardingSphere 迎来了 5.0.0-beta 版本的正式发布.经过半年多的优化和打 ...

  2. bzoj5210最大连通子块和 (动态dp+卡常好题)

    卡了一晚上,经历了被卡空间,被卡T,被卡数组等一堆惨惨的事情之后,终于在各位大爹的帮助下过了这个题qwqqq (全网都没有用矩阵转移的动态dp,让我很慌张) 首先,我们先考虑一个比较基础的\(dp\) ...

  3. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  4. python爬虫时,解决编码方式问题的万能钥匙(uicode,utf8,gbk......)

    转载   原文:https://blog.csdn.net/xiongzaiabc/article/details/81008330 无论遇到的网页代码是何种编码方式,都可以用以下方法统一解决 imp ...

  5. docker内服务访问宿主机服务

    目录 1. 场景 2. 解决 4. 参考 1. 场景 使用windows, wsl2 进行日常开发测试工作. 但是wsl2经常会遇到网络问题.比如今天在测试一个项目,核心功能是将postgres 的数 ...

  6. js--Symbol 符号基本数据类型

    前言 ECMAScript 6 中新增了 Symbol 符号这一基本数据类型,那么Symbol 是用来干什么的,对开发又有什么帮助呢?本文来总结记录一下 Symbol 的相关知识点. 正文 Symbo ...

  7. 【Java虚拟机3】类加载器

    前言 Java虚拟机设计团队有意把类加载阶段中的"通过一个类的全限定名来获取描述该类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类. ...

  8. Scrum Meeting 最终总结

    [软工小白菜]Scrum Meeting 最终总结 2020/4/28 一.会议内容 1.工作及计划 组员代号 完成的工作 明日计划 炎龙 1.整合了整个程序,生成了apk并且上传审核 无 风鹰 1. ...

  9. springboot整合rabbitmq实现生产者消息确认、死信交换器、未路由到队列的消息

    在上篇文章  springboot 整合 rabbitmq 中,我们实现了springboot 和rabbitmq的简单整合,这篇文章主要是对上篇文章功能的增强,主要完成如下功能. 需求: 生产者在启 ...

  10. spring social实现百度登录

    在早期我写过一篇spring social理解的文章,介绍了一些spring social的概念,但是没有提供一个例子.在这篇博客中,提供一个简单的spring social的例子,实现 百度登录,那 ...