sparkSQL中的example学习(1)
SparkSQLDemo.scala
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
object SparkSQLDemo {
// $example on:create_ds$
case class Person(name: String, age: Long)
// $example on:create_ds$
def main(args: Array[String]): Unit = {
//开启SparkSession
// $example on: init_session$
val spark = SparkSession
.builder()
.appName("SparkSQLDemo")
.master("local")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// $example off: init_session$
// runBasicDataFrameDemo(spark)
// runDatasetCreationDemo(spark)
// runInferSchemaDemo(spark)
runProgrammaticSchemaDemo(spark)
//关闭SparkSeesion
spark.stop()
}
private def runBasicDataFrameDemo(spark: SparkSession) = {
val df = spark.read.json("/Users/hadoop/app/spark/examples/src/main/resources/people.json")
//Displays the content of the DataFrame to stdout
df.show()
//Print the schema in a tree format
df.printSchema()
//Select only the "name" column
df.select("name").show()
//This import is needed to use the $-notation
import spark.implicits._
df.select($"name", $"age" + 1).show()
//Select people older than 21
df.select($"age" > 21).show()
//Count people by age
df.groupBy("age").count().show()
//$example on: global_temp_view$
//Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("select * from people")
sqlDF.show()
//Register the DataFrame as a global temporary view
df.createGlobalTempView("people")
//Global temporary view is tied to a system preserved database `global_temp`
spark.sql("select * from global_temp.people").show
//Global temporary view is cross-session
spark.newSession().sql("select * from global_temp.people").show()
}
private def runDatasetCreationDemo(spark: SparkSession) = {
// A container for a [[Dataset]], used for implicit conversions in Scala.
// To use this, import implicit conversions in SQL:
import spark.implicits._
// .toDS() -> 这是用括号声明的,以防止Scala编译器将`rdd.toDS(“1”)`视为调用此toDS然后应用于返回的数据集。
//Encoder are created for case classes (为case class 创建编码器)
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
//Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).foreach(println(_))//.collect()
//DataFrames can be converted to a Dataset by providing a class. Mapping will bedone by name
val path = "/Users/hadoop/app/spark/examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
}
private def runInferSchemaDemo(spark: SparkSession) = {
// $example on: schema_inferring$
//For implicit conversions from RDDs to DataFrames
import spark.implicits._
//Create an RDD of Person objects from a text file, convert it to a DataFrame
val peopleDF = spark.sparkContext
.textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
.map(_.split(","))
.map(x => Person(x(0), x(1).trim.toInt))
.toDF()
//Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")
//SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("select name, age from people where age between 13 and 19")
//The columns of a row in the result can be accessed by field index
//(结果中的行的列可以通过字段索引访问)
teenagersDF.map(teenager => s"Name: ${teenager(0)}").show()
//or by field name
teenagersDF.map(teenager => s"Name: ${teenager.getAs[String]("name")}").show()
//No pre-defined encoders for Dataset[Map[K,V]], define explicitly
//(Dataset[Map[K,V]] 没有预定义的编码器, 显式定义)
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
//Primitive types and case classes can be also defined as
//(原始类型和case类也可以定义为隐式val )
//implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()
//row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager =>
teenager.getValuesMap[Any](List("name", "age"))
).foreach(println(_))//.collect()
// $example off: schema_inferring$
}
private def runProgrammaticSchemaDemo(spark: SparkSession) = {
import spark.implicits._
// $example on: programmatic_schema$
//Create an RDD
val peopleRDD = spark.sparkContext.textFile("/Users/hadoop/app/spark/examples/src/main/resources/people.txt")
//The schema is encoded in a string
val schemaString = "name age"
//Generate the schema based on the string of schema
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldName, StringType, nullable = true))
val schema = StructType(fields)
//Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
.map(_.split(","))
.map(attributes => Row(attributes(0), attributes(1).trim))
//Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
//Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")
//SQL can be run over a temporary view created using DataFrames
val results = spark.sql("select name from people")
//The results of SQL queries are DataFrames and support all the normal RDD operations
//The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => s"Name: ${attributes(0)}").show()
// $exmaple off: programmatic_schema$
}
}


sparkSQL中的example学习(1)的更多相关文章
- sparkSQL中的example学习(3)
UserDefinedTypedAggregation.scala(用户可自定义类型) import org.apache.spark.sql.expressions.Aggregator impor ...
- sparkSQL中的example学习(2)
UserDefinedUntypedAggregate.scala(默认返回类型为空,不能更改) import org.apache.spark.sql.{Row, SparkSession} imp ...
- PHP中的Libevent学习
wangbin@2012,1,3 目录 Libevent在php中的应用学习 1. Libevent介绍 2. 为什么要学习libevent 3. Php libeven ...
- JS中childNodes深入学习
原文:JS中childNodes深入学习 <html xmlns="http://www.w3.org/1999/xhtml"> <head> <ti ...
- CNCC2017中的深度学习与跨媒体智能
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠 ...
- 【Spark篇】---SparkSQL中自定义UDF和UDAF,开窗函数的应用
一.前述 SparkSQL中的UDF相当于是1进1出,UDAF相当于是多进一出,类似于聚合函数. 开窗函数一般分组取topn时常用. 二.UDF和UDAF函数 1.UDF函数 java代码: Spar ...
- 图解BERT(NLP中的迁移学习)
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Tr ...
- python中confIgparser模块学习
python中configparser模块学习 ConfigParser模块在python中用来读取配置文件,配置文件的格式跟windows下的ini配置文件相似,可以包含一个或多个节(section ...
- Scala中的类学习
Scala中的类学习 从java了解类的情况下,了解Scala的类并不难.Scala类中的字段自动带getter和setter方法,用@BeanProperty注解生成javaBean对象的getXX ...
随机推荐
- VMware Tools安装方法
安装VMware Tools的步骤 点击[虚拟机]选项中的[安装VMware Tools],此时在Ubuntu的桌面上就会出现一个光盘图标. 如果之前已经安装过了,[虚拟机]选项中应为[重新安装VMw ...
- openresty安装笔记
目录 安装步骤: openresty安装在ubuntu下的安装 参考 安装OpenResty(Nginx+Lua)开发环境 安装步骤: # 创建目录/usr/servers,以后我们把所有软件安装在此 ...
- postman---postman参数关联
我们做接口测试的时候都会遇到一个场景,就是参数关联,所谓的参数关联就是上一个参数的返回值用于下一个参数的请求中,通过python中requests我们知道如何请求,那么通过postman如何请求? 参 ...
- minimize.m:共轭梯度法更新BP算法权值
minimize.m:共轭梯度法更新BP算法权值 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ Carl Edward Rasmussen在高斯机器学 ...
- 4. Vue - 指令(Add)
一.指令系统 1. v-text v-text主要用来更新textContent,可以等同于JS的text属性. <span v-text="msg"></s ...
- jmeter beanshell断言接口自动化实例
一.JMeter介绍 Apache JMeter是一款优秀的开源性能测试工具,在国外无论是在性能测试还是接口测试领域都有着非常高的使用率,但由于本身没有完善的中文文档以及典型开源工具特点(界面不美观) ...
- Pwnable-fd
打开Ubuntu输入ssh fd@pwnable.kr -p2222,连接之后输入密码guest 之后就是ls -l看看里面的文件和权限,fd.fd.c.flag 看看fd.c的源码 #include ...
- day53_9_17 django数据库表关联,路由和视图
一.数据库的关系建立. 在原生的数据库语句中,建立表与表之间的联系,就是添加一个字段,将联系的表的id值添加到该字段中. django所作的也就是这些. 以图书管理系统为例,图书管理系统有四张表:书籍 ...
- [转] 构建Docker镜像两种方式的比较-Dockerfile方式和S2I方式
原文地址:https://www.cnblogs.com/tianshifu/p/8127837.html 前言 写Dockerfile是构建Docker镜像最通常的方式,接触过Docker的童鞋多少 ...
- 【CSP-S 2019】D2T2 划分
Description 传送门 Solution 算法1 12pts 指数算法随便乱搞. 算法2 36pts \(O(n^3)\)dp. 设\(f_{i,j}\)表示以位置\(j\)结尾,上一个决策点 ...