问题描述

CF786B

LG-CF786B


题解

线段树优化建图

线段树的一个区间结点代表 \([l,r]\) 区间点。

然后建立区间点的时候就在线段树上建边,有效减少点的个数,从而提高时空效率。

优质题解传送门


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; #define int long long template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} const int maxn=100100;
int INF=0x3f3f3f3f3f3f3f3fll; #define pii(x,y) make_pair(x,y) #define mid ((l+r)>>1)
#define lfc (x<<1)
#define rgc ((x<<1)|1) vector < pair < int , int > > e[maxn*10];
int n,T,S;
int cnt,out[maxn<<2],in[maxn<<2]; void build(int x,int l,int r){
if(l==r){
out[x]=in[x]=l;return;
}
build(lfc,l,mid);build(rgc,mid+1,r);
out[x]=++cnt,in[x]=++cnt;
e[out[lfc]].push_back(pii(out[x],0));
e[out[rgc]].push_back(pii(out[x],0));
e[in[x]].push_back(pii(in[lfc],0));
e[in[x]].push_back(pii(in[rgc],0));
} int L,R,st,val; void change_in(int x,int l,int r){
if(L<=l&&r<=R){
e[st].push_back(pii(in[x],val));return;
}
if(r<L||R<l) return;
change_in(lfc,l,mid);change_in(rgc,mid+1,r);
} void change_out(int x,int l,int r){
if(L<=l&&r<=R){
e[out[x]].push_back(pii(st,val));return;
}
if(r<L||R<l) return;
change_out(lfc,l,mid);change_out(rgc,mid+1,r);
} int dis[maxn*10];
priority_queue< pair <int,int> > q; bool vis[maxn*10]; void dijkstra(){
memset(dis,0x3f,sizeof(dis));dis[S]=0;
q.push(pii(0,S));
while(!q.empty()){
int x=q.top().second;q.pop();
if(vis[x]) continue;
vis[x]=1;
for(auto &i:e[x]){
int y=i.first;
if(y==0) continue;
if(i.second+dis[x]<dis[y]){
dis[y]=dis[x]+i.second;
q.push(pii(-dis[y],y));
}
}
}
} signed main(){
read(n);read(T);read(S);
cnt=n;build(1,1,n);
while(T--){
int op;read(op);
if(op==1){
int aa,bb,cc;read(aa);read(bb);read(cc);
e[aa].push_back(pii(bb,cc));
}
else if(op==2){
int aa,bb,cc,dd;read(aa);read(bb);read(cc);read(dd);
L=bb,R=cc,st=aa,val=dd;change_in(1,1,n);
}
else{
int aa,bb,cc,dd;read(aa);read(bb);read(cc);read(dd);
L=bb,R=cc,st=aa,val=dd;change_out(1,1,n);
}
}
dijkstra();
for(int i=1;i<=n;i++){
printf("%lld%c",(dis[i]==INF)?-1:dis[i]," \n"[i==n]);
}
return 0;
}

CF786B Legacy 线段树优化建图的更多相关文章

  1. CF786B Legacy 线段树优化建图 + spfa

    CodeForces 786B Rick和他的同事们做出了一种新的带放射性的婴儿食品(???根据图片和原文的确如此...),与此同时很多坏人正追赶着他们.因此Rick想在坏人们捉到他之前把他的遗产留给 ...

  2. Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)

    题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...

  3. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  4. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  5. 【BZOJ3681】Arietta 树链剖分+可持久化线段树优化建图+网络流

    [BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一 ...

  6. 【ARC069F】Flags 2-sat+线段树优化建图+二分

    Description ​ 数轴上有 n 个旗子,第 ii 个可以插在坐标 xi或者 yi,最大化两两旗子之间的最小距离. Input ​ 第一行一个整数 N. ​ 接下来 N 行每行两个整数 xi, ...

  7. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  8. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  9. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

随机推荐

  1. 201871010102-常龙龙《面向对象程序设计(java)》第十三周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...

  2. AcWing 801. 二进制中1的个数

    网址 https://www.acwing.com/solution/AcWing/content/2066/ 题目描述给定一个长度为n的数列,请你求出数列中每个数的二进制表示中1的个数. 算法1主要 ...

  3. macOS 安装 Docker Desktop CE(转)

    现在基本上都使用docker进行部署项目,所以还是有必要学习下,关于docker的简介这里就不在描述,本文转载自https://yeasy.gitbooks.io/docker_practice/co ...

  4. 浅谈状态压缩DP

    浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...

  5. 2019 SDN上机第6次作业

    2019 SDN上机第6次作业 1.实验拓扑 (1)实验拓扑 (2)使用Python脚本完成拓扑搭建 from mininet.topo import Topo from mininet.net im ...

  6. 【nginx启动报错】重启服务器之后nginx启动错

    错误信息: # ./nginx  nginx: [emerg] open() "/var/run/nginx/nginx.pid" failed (2: No such file ...

  7. 15-Django开发REST接口

    使用Django开发REST接口 我们以在Django框架中使用的图书以及书中人物案例来写一套支持图书数据增删改查的REST API接口,来理解REST API的开发(前后端均发送JSON格式数据) ...

  8. 给 K8s API “做减法”:阿里巴巴云原生应用管理的挑战和实践

    作者 | 孙健波(天元)  阿里巴巴技术专家本文整理自 11 月 21 日社群分享,每月 2 场高质量分享,点击加入社群. 早在 2011 年,阿里巴巴内部便开始了应用容器化,当时最开始是基于 LXC ...

  9. 3DES对称加密算法(ABAP 语言实现版)

    公司人事数据要求在系统间加密传输,而对接系统大部分是Java系统,要在不同的异构系统间能很好的加解密码,想到了标准的对称加密算法DES,因为是标准的算法,网络上存在大量公开用Java的DES算法,JA ...

  10. 易优CMS:小白学代码之notempty

    [基础用法] 名称:notempty 功能:判断某个变量是否为空,可以嵌套到任何标签里面使用,比如:channel.type等 语法: {eyou:notempty name='$eyou.field ...