问题

(1)ReentrantLock有哪些优点?

(2)ReentrantLock有哪些缺点?

(3)ReentrantLock是否可以完全替代synchronized?

简介

synchronized是Java原生提供的用于在多线程环境中保证同步的关键字,底层是通过修改对象头中的MarkWord来实现的。

ReentrantLock是Java语言层面提供的用于在多线程环境中保证同步的类,底层是通过原子更新状态变量state来实现的。

既然有了synchronized的关键字来保证同步了,为什么还要实现一个ReentrantLock类呢?它们之间有什么异同呢?

ReentrantLock VS synchronized

直接上表格:(手机横屏查看更方便)

功能 ReentrantLock synchronized
可重入 支持 支持
非公平 支持(默认) 支持
加锁/解锁方式 需要手动加锁、解锁,一般使用try..finally..保证锁能够释放 手动加锁,无需刻意解锁
按key锁 不支持,比如按用户id加锁 支持,synchronized加锁时需要传入一个对象
公平锁 支持,new ReentrantLock(true) 不支持
中断 支持,lockInterruptibly() 不支持
尝试加锁 支持,tryLock() 不支持
超时锁 支持,tryLock(timeout, unit) 不支持
获取当前线程获取锁的次数 支持,getHoldCount() 不支持
获取等待的线程 支持,getWaitingThreads() 不支持
检测是否被当前线程占有 支持,isHeldByCurrentThread() 不支持
检测是否被任意线程占有 支持,isLocked() 不支持
条件锁 可支持多个条件,condition.await(),condition.signal(),condition.signalAll() 只支持一个,obj.wait(),obj.notify(),obj.notifyAll()

对比测试

在测试之前,我们先预想一下结果,随着线程数的不断增加,ReentrantLock(fair)、ReentrantLock(unfair)、synchronized三者的效率怎样呢?

我猜测应该是ReentrantLock(unfair)> synchronized > ReentrantLock(fair)。

到底是不是这样呢?

直接上测试代码:(为了全面对比,彤哥这里把AtomicInteger和LongAdder也拿来一起对比了)

public class ReentrantLockVsSynchronizedTest {
public static AtomicInteger a = new AtomicInteger(0);
public static LongAdder b = new LongAdder();
public static int c = 0;
public static int d = 0;
public static int e = 0; public static final ReentrantLock fairLock = new ReentrantLock(true);
public static final ReentrantLock unfairLock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException {
System.out.println("-------------------------------------");
testAll(1, 100000);
System.out.println("-------------------------------------");
testAll(2, 100000);
System.out.println("-------------------------------------");
testAll(4, 100000);
System.out.println("-------------------------------------");
testAll(6, 100000);
System.out.println("-------------------------------------");
testAll(8, 100000);
System.out.println("-------------------------------------");
testAll(10, 100000);
System.out.println("-------------------------------------");
testAll(50, 100000);
System.out.println("-------------------------------------");
testAll(100, 100000);
System.out.println("-------------------------------------");
testAll(200, 100000);
System.out.println("-------------------------------------");
testAll(500, 100000);
System.out.println("-------------------------------------");
// testAll(1000, 1000000);
System.out.println("-------------------------------------");
testAll(500, 10000);
System.out.println("-------------------------------------");
testAll(500, 1000);
System.out.println("-------------------------------------");
testAll(500, 100);
System.out.println("-------------------------------------");
testAll(500, 10);
System.out.println("-------------------------------------");
testAll(500, 1);
System.out.println("-------------------------------------");
} public static void testAll(int threadCount, int loopCount) throws InterruptedException {
testAtomicInteger(threadCount, loopCount);
testLongAdder(threadCount, loopCount);
testSynchronized(threadCount, loopCount);
testReentrantLockUnfair(threadCount, loopCount);
// testReentrantLockFair(threadCount, loopCount);
} public static void testAtomicInteger(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
a.incrementAndGet();
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testAtomicInteger: result=" + a.get() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testLongAdder(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
b.increment();
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testLongAdder: result=" + b.sum() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testReentrantLockFair(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
fairLock.lock();
// 消除try的性能影响
// try {
c++;
// } finally {
fairLock.unlock();
// }
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testReentrantLockFair: result=" + c + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testReentrantLockUnfair(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
unfairLock.lock();
// 消除try的性能影响
// try {
d++;
// } finally {
unfairLock.unlock();
// }
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testReentrantLockUnfair: result=" + d + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testSynchronized(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
synchronized (ReentrantLockVsSynchronizedTest.class) {
e++;
}
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testSynchronized: result=" + e + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} }

运行这段代码,你会发现结果大大出乎意料,真的是不测不知道,一测吓一跳,运行后发现以下规律:

随着线程数的不断增加,synchronized的效率竟然比ReentrantLock非公平模式要高!

彤哥的电脑上大概是高3倍左右,我的运行环境是4核8G,java版本是8,请大家一定要在自己电脑上运行一下,并且最好能给我反馈一下。

彤哥又使用Java7及以下的版本运行了,发现在Java7及以下版本中synchronized的效率确实比ReentrantLock的效率低一些。

总结

(1)synchronized是Java原生关键字锁;

(2)ReentrantLock是Java语言层面提供的锁;

(3)ReentrantLock的功能非常丰富,解决了很多synchronized的局限性;

(4)至于在非公平模式下,ReentrantLock与synchronized的效率孰高孰低,彤哥给出的结论是随着Java版本的不断升级,synchronized的效率只会越来越高;

彩蛋

既然ReentrantLock的功能更丰富,而且效率也不低,我们是不是可以放弃使用synchronized了呢?

答:我认为不是。因为synchronized是Java原生支持的,随着Java版本的不断升级,Java团队也是在不断优化synchronized,所以我认为在功能相同的前提下,最好还是使用原生的synchronized关键字来加锁,这样我们就能获得Java版本升级带来的免费的性能提升的空间。

另外,在Java8的ConcurrentHashMap中已经把ReentrantLock换成了synchronized来分段加锁了,这也是Java版本不断升级带来的免费的synchronized的性能提升。

推荐阅读

  1. 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁

  2. 死磕 java同步系列之ReentrantLock源码解析(一)——公平锁、非公平锁

  3. 死磕 java同步系列之AQS起篇

  4. 死磕 java同步系列之自己动手写一个锁Lock

  5. 死磕 java魔法类之Unsafe解析

  6. 死磕 java同步系列之JMM(Java Memory Model)

  7. 死磕 java同步系列之volatile解析

  8. 死磕 java同步系列之synchronized解析


欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java同步系列之ReentrantLock VS synchronized——结果可能跟你想的不一样的更多相关文章

  1. 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁

    问题 (1)条件锁是什么? (2)条件锁适用于什么场景? (3)条件锁的await()是在其它线程signal()的时候唤醒的吗? 简介 条件锁,是指在获取锁之后发现当前业务场景自己无法处理,而需要等 ...

  2. 死磕 java同步系列之ReentrantLock源码解析(一)——公平锁、非公平锁

    问题 (1)重入锁是什么? (2)ReentrantLock如何实现重入锁? (3)ReentrantLock为什么默认是非公平模式? (4)ReentrantLock除了可重入还有哪些特性? 简介 ...

  3. 死磕 java同步系列之CyclicBarrier源码解析——有图有真相

    问题 (1)CyclicBarrier是什么? (2)CyclicBarrier具有什么特性? (3)CyclicBarrier与CountDownLatch的对比? 简介 CyclicBarrier ...

  4. 死磕 java同步系列之Phaser源码解析

    问题 (1)Phaser是什么? (2)Phaser具有哪些特性? (3)Phaser相对于CyclicBarrier和CountDownLatch的优势? 简介 Phaser,翻译为阶段,它适用于这 ...

  5. 死磕 java同步系列之zookeeper分布式锁

    问题 (1)zookeeper如何实现分布式锁? (2)zookeeper分布式锁有哪些优点? (3)zookeeper分布式锁有哪些缺点? 简介 zooKeeper是一个分布式的,开放源码的分布式应 ...

  6. 死磕 java同步系列之redis分布式锁进化史

    问题 (1)redis如何实现分布式锁? (2)redis分布式锁有哪些优点? (3)redis分布式锁有哪些缺点? (4)redis实现分布式锁有没有现成的轮子可以使用? 简介 Redis(全称:R ...

  7. 死磕 java同步系列之终结篇

    简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...

  8. 死磕 java同步系列之StampedLock源码解析

    问题 (1)StampedLock是什么? (2)StampedLock具有什么特性? (3)StampedLock是否支持可重入? (4)StampedLock与ReentrantReadWrite ...

  9. 死磕 java同步系列之AQS终篇(面试)

    问题 (1)AQS的定位? (2)AQS的重要组成部分? (3)AQS运用的设计模式? (4)AQS的总体流程? 简介 AQS的全称是AbstractQueuedSynchronizer,它的定位是为 ...

随机推荐

  1. ReactNative: 使用Image图片组件

    一.简介 在应用程序中,图片组件非常常见,不论是缩略图.大图.还是小图标等等,都需要使用图片组件进行显示.在Web开发中提供了<img/>标签显示图片,在iOS中提供了UIImageVie ...

  2. nginx如何实现负载均衡以及实现方式

    什么是ngnix? Nginx是一个http服务器.是一个使用c语言开发的高性能的http 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器.nginx能够支撑5万并发链接,并且cpu ...

  3. 2019年全国高校计算机能力挑战赛初赛C语言解答

    http://www.ncccu.org.cn 2019年全国高校计算机能力挑战赛分设大数据算法赛,人工智能算法赛,Office高级应用赛,程序设计赛4大赛项 C语言初赛解答 1:编程1 16.现有一 ...

  4. vmalloc/vfree问题思考记录

    arm 32 用户进程陷入内核态通过vmalloc/vfree分配内存的流程 内核在更新非连续内存区对应的页表项是非常懒惰的.--<深入理解linux内核> arm 32 只有一个PGD ...

  5. 我的计划任务 --- 实现市电停电安全关闭群辉,Windows, Linux等设备

    有一次突然停电,我的群辉DS218+ 的一块硬盘出现故障了,让我担心我的数据安全,其实我是有UPS, 不是在线式的,然后就想如何实现停电自动关机呢? 经过半天的了解,其实群辉支持telnet协议,于是 ...

  6. Linux下使命令不受终端断开的影响,保持在后台运行的几种方法及原理

    摘自https://www.ibm.com/developerworks/cn/linux/l-cn-nohup/ 记录一下Linux下使命令不受终端断开的影响,保持在后台运行的几个方法及其原理.当用 ...

  7. GO-逻辑判断(if,else if,else,switch)

    一.if逻辑判断 package main import "fmt" func main() { var a =10; if a>10 { //大括号前不能回车 fmt.Pr ...

  8. Xcode报错:could not attach to pid:"1764"

    这种错误不是什么问题,按照参考链接操作即可,亲测有效: https://www.cnblogs.com/luorende/p/6295945.html 在运行项目时出现了如下错误 (基本上重新启动项目 ...

  9. JS&Jquery基础之窗口对象的关系总结

    1.top    该变更永远指分割窗口最高层次的浏览器窗口.如果计划从分割窗口的最高层次开始执行命令,就可以用top变量.2.opener opener用于在window.open的页面引用执行该wi ...

  10. linux下安装oracle数据库--干货

    1.修改系统名称,关闭防火墙,selinux.2.挂载镜像,并写入开机自动挂载.挂载点为/mnt/yummount -t iso9660 -o,loop /soft/Centos6.iso /mnt/ ...