版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

Scale Layer是输入进行缩放和平移,常常出现在BatchNorm归一化后,Caffe中常用BatchNorm+Scale实现归一化操作(等同Pytorch中BatchNorm)

首先我们先看一下 ScaleParameter

message ScaleParameter {
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
// 根据 bottom[0] 指定 bottom[1] 的形状
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar multiplier.
// 例如,如果 bottom[0] 的 shape 为 100x3x40x60,则 top[0] 输出相同的 shape;
// bottom[1] 可以包含上面 shapes 中的任一种(对于给定 axis 值).
// 而且,bottom[1] 可以是 empty shape 的,没有任何的 axis 值,只是一个标量的乘子.
optional int32 axis = 1 [default = 1];
  // (num_axes is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// (忽略 num_axes 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数.
// 否则,num_axes 是由第二个 bottom 的数量来决定的.)
// The number of axes of the input (bottom[0]) covered by the scale
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
// bottom[0] 的 num_axes 是由 scale 参数覆盖的;
optional int32 num_axes = 2 [default = 1]; // (filler is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer.)
// (忽略 filler 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数.
// The initialization for the learned scale parameter.
// scale 参数学习的初始化
// Default is the unit (1) initialization, resulting in the ScaleLayer
// initially performing the identity operation.
// 默认是单位初始化,使 Scale 层初始进行单位操作.
optional FillerParameter filler = 3; // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
// may be more efficient). Initialized with bias_filler (defaults to 0).
// 是否学习 bias,等价于 ScaleLayer+BiasLayer,只不过效率更高
// 采用 bias_filler 进行初始化. 默认为 0.
optional bool bias_term = 4 [default = false];
optional FillerParameter bias_filler = 5;

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Scale layer 在prototxt里面的书写:

layer {
name: "scale_conv1"
type: "Scale"
bottom: "conv1"
top: "conv1"
 scale_param {
bias_term: true

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

例如在MobileNet中:

layer {
name: "conv6_4/scale"
type: "Scale"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
                                </div>
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-095d4a0b23.css" rel="stylesheet">
</div>
posted @
2019-09-24 17:47 
core! 
阅读(...) 
评论(...) 
编辑 
收藏

转caffe scale layer的更多相关文章

  1. Caffe中Layer注册机制

    Caffe内部维护一个注册表用于查找特定Layer对应的工厂函数(Layer Factory的设计用到了设计模式里的工厂模式).Caffe的Layer注册表是一组键值对(key, value)( La ...

  2. caffe自定义layer

    caffe自带layers: http://caffe.berkeleyvision.org/tutorial/layers.html Layers: Image Data - read raw im ...

  3. Caffe学习--Layer分析

    Caffe_Layer 1.基本数据结构 //Layer层主要的的参数 LayerParamter layer_param_; // protobuf内的layer参数 vector<share ...

  4. caffe rpn layer 中的 reshape layer

    Reshape层:(改变blob的形状,N,C,W,H) layer { name: "reshape" type: "Reshape" bottom: &qu ...

  5. caffe 学习(3)——Layer Catalogue

    layer是建模和计算的基本单元. caffe的目录包含各种state-of-the-art model的layers. 为了创建一个caffe model,我们需要定义模型架构在一个protocol ...

  6. caffe源码学习

    本文转载自:https://buptldy.github.io/2016/10/09/2016-10-09-Caffe_Code/ Caffe简介 Caffe作为一个优秀的深度学习框架网上已经有很多内 ...

  7. TensorRT加速 ——NVIDIA终端AI芯片加速用,可以直接利用caffe或TensorFlow生成的模型来predict(inference)

    官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inf ...

  8. 深度学习工具caffe具体安装指南

    caffe安装指南-吐血整理 前言: 在一台系统环境较好的linux机器上能够非常easy的安装caffe,可是假设系统本身非常旧,又没有GPU的话.安装就太麻烦了,全部都得从头做起,本文档旨在尽可能 ...

  9. Caffe代码分析--crop_layer.cu

    因为要修改Caffe crop layer GPU部分的代码,现将自己对这部分GPU代码的理解总结一下,请大家多多指教! crop layer完成的功能(以matlab的方式表示):A(N,C,H,W ...

随机推荐

  1. IntersectionObserver API,观察元素是否进入了可视区域

    网页开发时,常常需要了解某个元素是否进入了"视口"(viewport),即用户能不能看到它. 上图的绿色方块不断滚动,顶部会提示它的可见性. 传统的实现方法是,监听到scroll事 ...

  2. angularjs link compile与controller的区别详解,了解angular生命周期

     壹 ❀ 引 我在 angularjs 一篇文章看懂自定义指令directive 一文中简单提及了自定义指令中的link链接函数与compile编译函数,并说到两者具有互斥特性,即同时存在link与c ...

  3. 01-Nginx安装

    一.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel 二.首先安装PCRE PC ...

  4. Java描述设计模式(06):建造者模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 基于建造者模式,描述软件开发的流程. 1.代码实现 /** * 基于建造者模式描述软件开发 */ public class C0 ...

  5. Java入门系列之集合LinkedList源码分析(九)

    前言 上一节我们手写实现了单链表和双链表,本节我们来看看源码是如何实现的并且对比手动实现有哪些可优化的地方. LinkedList源码分析 通过上一节我们对双链表原理的讲解,同时我们对照如下图也可知道 ...

  6. 3D开发基础知识和简单示例

    引言 现在物联网概念这么火,如果监控的信息能够实时在手机的客服端中以3D形式展示给我们,那种体验大家可以发挥自己的想象. 那生活中我们还有很多地方用到这些,如上图所示的Kinect 在医疗上的应用,当 ...

  7. 清新简约风格毕业论文答辩PPT模板推荐

    不管是学生还是老师,应该经常会需要学生答辩的PPT模板,今天给大家推荐织梦58的学生答辩ppt模板. 模版来源:http://ppt.dede58.com/gongzuohuibao/26494.ht ...

  8. PHP清除数组中为0的元素

    array_diff($arr, [0]): // 清除数组中指定元素 $arr = [1,2,3,0,1]; $arr = array_diff($arr, [0]);//输出[1,2,3,1] v ...

  9. Prometheus Grafana快速搭建

    Prometheus Prometheus和Grafana组合基本上是监控系统的标配.Prometheus做存储后端,Grafana做分析及可视化界面. 普罗米修斯是开源的系统监控/报警工具库,功能非 ...

  10. Linux系统学习 四、网络基础—互联网概述,互联网接入方式

    互联网概述 WWW:万维网 FTP:文件传输协议 E-MAIL:电子邮件 WWW 典型的C/S架构 URL:统一资源定位 协议+域名或IP:端口+网页路径+网页名 http://www.xxx.com ...