对于同一个方法执行大量数据的程序时,我们可以采用ddt数据驱动的方式,来对数据规范化整理及输出

一、需要使用python的ddt库,ddt,data,unpack方法

1、仅使用ddt和data,代码如下

import unittest
from ddt import ddt, data, unpack test_data = (1, 2, 3)
@ddt # 需要在要引用的类前面加上 @ddt声明
class TestAdd(unittest.TestCase):
@data(test_data) # 调用ddt的数据
def test_add(self, a):
print(a)

test_add函数那里的形参a可以随便定义,程序会自动去接收 @data里面的值

输出结果

2、使用unpack功能,此方法主要是拆分数据类型,例如元组(1, 2, 3),在data下面加上 unpack后,会将数据类型拆分为

"""元组、列表数据驱动"""
import unittest
from ddt import ddt, data, unpack test_data = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
@ddt # 需要在要引用的类前面加上 @ddt声明
class TestAdd(unittest.TestCase):
@data(test_data) # 调用ddt的数据
@unpack
def test_add(self, a, b, c):
print('数据类型为', type(a), '数值为', a)
print('数据类型为', type(b), '数值为', b)
print('数据类型为', type(c), '数值为', c)

输出结果为:

会将test_data大元组拆分为,子类数值,并自动匹配数据类型。   例如将初始数据变为列表类型,并且列表里面的项未字符类型时

import unittest
from ddt import ddt, data, unpack #test_data = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
test_data = ['A', 'B', 'C']
@ddt # 需要在要引用的类前面加上 @ddt声明
class TestAdd(unittest.TestCase):
@data(test_data) # 调用ddt的数据
@unpack
def test_add(self, a, b, c):
print('数据类型为', type(a), '数值为', a)
print('数据类型为', type(b), '数值为', b)
print('数据类型为', type(c), '数值为', c)

结果如下:

所以,ddt和data可以实现数据调用, unpack能对调用的大量数据进行拆分,得到最小等分的数据并进行使用。  注意,拆分之后的数据在函数test_data引用时,形参要和拆分的数量一致,即拆分了3个变量,那么我们调用函数的形参也必须是3个a,b,c  (形参变量名不限,可以任意取,除了系统关键字)

二、对字典类型的数据进行数据驱动及拆分

字典是以键对值的形式来展示的,调用和拆分与列表、元组一样。  唯一不同点,在调用函数引用时,形参必须是字典的键值

"""字典类型数据驱动"""
import unittest
from ddt import ddt, data, unpack test_data = {"tall": 180, "sex": "boy"}
@ddt
class TestAdd(unittest.TestCase):
@data(test_data)
@unpack
def test_add(self, tall, sex): # 此处的形参必须要是字典的键值
print("身高是", tall, "性别是", sex)

运行结果:

三、拓展使用

我们在进行数据驱动时,一般是从excel中读取数据,然后引用。   excel中的数据读取

from openpyxl import load_workbook

class ReadExcel:  # 读取Excel里面的内容
def __init__(self, file_name, sheet_name):
self.file_name = file_name
self.sheet_name = sheet_name def get_title(self): # 读取Excel里面的title数据
wb = load_workbook(self.file_name) # 打开Excel工作簿
sheet1 = wb[self.sheet_name]
title = [] # 定义一个空列表,将读取的title字段进行存储
for i in range(1, sheet1.max_column+1):
title.append(sheet1.cell(1, i).value)
return title def do_excel(self):
wb = load_workbook(self.file_name)
sheet1 = wb[self.sheet_name]
title = self.get_title() # 调用title内容
all_data = []
for j in range(2, sheet1.max_row+1): # 获取最大行数,加入循环
row_data={}
for i in range(3, sheet1.max_column+1): # 获取最大列数,进行嵌套循环
row_data[title[i-1]] = sheet1.cell(j, i).value # 把拿到的数据进行字典的键对值匹配
all_data.append(row_data)
return all_data

然后ddt进行引用即可

Python3数据驱动ddt的更多相关文章

  1. python webdriver 测试框架-数据驱动DDT的例子

    先在cmd环境 运行 pip install ddt 安装数据驱动ddt模块  脚本: #encoding=utf-8 from selenium import webdriver import un ...

  2. Python 数据驱动ddt 使用

    准备工作: pip install ddt 知识点: 一,数据驱动和代码驱动: 数据驱动的意思是  根据你提供的数据来测试的  比如 ATP框架 需要excel里面的测试用例 代码驱动是必须得写代码  ...

  3. 数据驱动ddt

    在设计用例的时候,有些用例操作过程是一样的,只是参数数据输入的不同,如果用例重复的去写操作过程会增加代码量,对于这种多组数据的测试用例,可以使用数据驱动设计模式,一组数据对应一个测试用例,用例自动加载 ...

  4. unittest使用数据驱动ddt

    简介 ddt(data driven test)数据驱动测试:由外部数据集合来驱动测试用例,适用于测试方法不变,但需要大量变化的数据进行测试的情况,目的就是为了数据和测试步骤的分离 由于unittes ...

  5. Python数据驱动DDT的应用

    在开始之前,我们先来明确一下什么是数据驱动,在百度百科中数据驱动的解释是:数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子.利用黑盒测试法进行 ...

  6. python接口自动化测试 - 数据驱动DDT模块的简单使用

    DDT简单介绍 名称:Data-Driven Tests,数据驱动测试 作用:由外部数据集合来驱动测试用例的执行 核心的思想:数据和测试代码分离 应用场景:一组外部数据来执行相同的操作 优点:当测试数 ...

  7. unittest---unittest数据驱动(ddt)

    在做测试的时候,有些地方无论是接口还是UI只是参数数据的输入不一样,操作过程是一样的.重复去写操作过程会增加代码量,我们可以通过参数化的方式解决这个问题,也叫做数据驱动,我们通过python做参数化的 ...

  8. python之数据驱动ddt操作(方法三)

    import unittestfrom selenium import webdriverfrom selenium.webdriver.common.by import Byimport unitt ...

  9. python之数据驱动ddt操作(方法二)

    import unittestfrom ddt import ddt,unpack,datafrom selenium import webdriverfrom selenium.webdriver. ...

随机推荐

  1. Zookeeper详解-应用程序(七)

    Zookeeper为分布式环境提供灵活的协调基础架构.ZooKeeper框架支持许多当今最好的工业应用程序.我们将在本章中讨论ZooKeeper的一些最显着的应用. 雅虎 ZooKeeper框架最初是 ...

  2. Spring ——表达式语言 Spring Expression Language (转载)

    目录 SpEL简介与功能特性 一.为什么需要Spring表达式语言 二.SpEL表达式Hello World! 三.SpEL表达式 3.1.文字表达式 3.2.SPEL语言特性 3.2.1.属性 3. ...

  3. vSphere Client克隆虚拟机

    免费的VMWare ESXi5.5非常强大,使用ESXi经常会遇到这样的问题,我需要建立多个虚拟机,系统一个一个安装很麻烦.VMware ESXi.VMware vCenter Server 和 vS ...

  4. 我是这么学习Selenium元素定位操作的

    写在前面 做web自动化测试都有体会,本质也就是通过操作页面元素对象来模拟用户操作行为,那么首先我们先找到这些元素对象,然后才能进行一系列操作. 我们得先告诉自动化工具或者说代码要操作那个元素,毕竟代 ...

  5. 004-python-列表、元组、字典

    1. 什么是列表 列表是一个可变的数据类型 列表由[]来表示, 每一项元素使用逗号隔开. 列表什么都能装. 能装对象的对象. 列表可以装大量的数据 2. 列表的索引和切片 列表和字符串一样. 也有索引 ...

  6. html手机自适应屏幕

    <meta name="viewport" content="height=device-width, initial-scale=1.0, maximum-sca ...

  7. linux上mysql MM(双主)架构及keepalived搭建

    master1 10.1.1.14 VIP 10.1.1.16master2 10.1.1.15 VIP 10.1.1.16 一.mysql MM配置1.修改master1的my.cnf# vi /e ...

  8. centos7 + Nginx+ HTTPS + uwsgi + python3.6 + Docker + Django1.11 + mysql 5.6 + virtualenv 环境搭建

    环境搭建: 系统: ​ centos7.2 x64 开发环境: ​ python3.6 ​ Django 1.11 虚拟环境: [Docker](https://www.runoob.com/dock ...

  9. mybatis-generator生成数据表中注释

    0.git clone https://github.com/backkoms/mybatis-generator-comments.git,编译打包,install到本地或delopy私服库中均可. ...

  10. Java设计模式学习笔记(三) 工厂方法模式

    前言 本篇是设计模式学习笔记的其中一篇文章,如对其他模式有兴趣,可从该地址查找设计模式学习笔记汇总地址 1. 简介 上一篇博客介绍了简单工厂模式,简单工厂模式存在一个很严重的问题: 就是当系统需要引入 ...