题目:给定一棵二叉树和其中的一个节点,如何找出中序遍历序列的下一个节点?树中的节点除了有两个分别指向左、右子节点的指针,还有一个指向父节点的指针。

测试用例:

  • 普通二叉树(完全二叉树,不完全二叉树)。
  • 特殊二叉树(所有节点都没有右子节点的二叉树;所有节点都没有左子节点的二叉树;只有一个节点的二叉树;二叉树的根节点指针为nullptr)。
  • 不同位置的节点的下一个节点(下一个节点为当前节点的右子节点、右子树的最左子节点、父节点、跨层的父节点等;当前节点没有下一个节点)。

测试代码:

void Test(char* testName, BinaryTreeNode* pNode, BinaryTreeNode* expected)
{
if(testName != nullptr)
printf("%s begins: ", testName);
BinaryTreeNode* pNext = GetNext(pNode);
if(pNext == expected)
printf("Passed.\n");
else
printf("FAILED.\n");
} // 8
// 6 10
// 5 7 9 11
void Test1_7()
{
BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
BinaryTreeNode* pNode9 = CreateBinaryTreeNode(9);
BinaryTreeNode* pNode11 = CreateBinaryTreeNode(11); ConnectTreeNodes(pNode8, pNode6, pNode10);
ConnectTreeNodes(pNode6, pNode5, pNode7);
ConnectTreeNodes(pNode10, pNode9, pNode11); Test("Test1", pNode8, pNode9);
Test("Test2", pNode6, pNode7);
Test("Test3", pNode10, pNode11);
Test("Test4", pNode5, pNode6);
Test("Test5", pNode7, pNode8);
Test("Test6", pNode9, pNode10);
Test("Test7", pNode11, nullptr); DestroyTree(pNode8);
} // 5
// 4
// 3
// 2
void Test8_11()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2); ConnectTreeNodes(pNode5, pNode4, nullptr);
ConnectTreeNodes(pNode4, pNode3, nullptr);
ConnectTreeNodes(pNode3, pNode2, nullptr); Test("Test8", pNode5, nullptr);
Test("Test9", pNode4, pNode5);
Test("Test10", pNode3, pNode4);
Test("Test11", pNode2, pNode3); DestroyTree(pNode5);
} // 2
// 3
// 4
// 5
void Test12_15()
{
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5); ConnectTreeNodes(pNode2, nullptr, pNode3);
ConnectTreeNodes(pNode3, nullptr, pNode4);
ConnectTreeNodes(pNode4, nullptr, pNode5); Test("Test12", pNode5, nullptr);
Test("Test13", pNode4, pNode5);
Test("Test14", pNode3, pNode4);
Test("Test15", pNode2, pNode3); DestroyTree(pNode2);
} void Test16()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5); Test("Test16", pNode5, nullptr); DestroyTree(pNode5);
}

本题考点:

  • 考查应聘者对二叉树中序遍历的理解程度。只有对二叉树的遍历算法有了深刻的理解,应聘者才有可能准确找出每个节点的中序遍历的下一个节点。
  • 考查应聘者分析复杂问题的能力。应聘者只有画出二叉树的结构图、通过具体的例子找出中序遍历下一个节点的规律,才有可能设计出可行的算法。

实现代码:

#include <cstdio>

struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
BinaryTreeNode* m_pParent;
}; BinaryTreeNode* GetNext(BinaryTreeNode* pNode)
{
if(pNode == nullptr)
return nullptr;
BinaryTreeNode* pNext = nullptr;
if(pNode->m_pRight != nullptr)
{
BinaryTreeNode* pRight = pNode->m_pRight;
while(pRight->m_pLeft != nullptr)
pRight = pRight->m_pLeft;
pNext = pRight;
}
else if(pNode->m_pParent != nullptr)
{
BinaryTreeNode* pCurrent = pNode;
BinaryTreeNode* pParent = pNode->m_pParent;
while(pParent != nullptr && pCurrent == pParent->m_pRight)
{
pCurrent = pParent;
pParent = pParent->m_pParent;
}
pNext = pParent;
}
return pNext;
}
// ==================== 辅助代码用来构建二叉树 ====================
BinaryTreeNode* CreateBinaryTreeNode(int value)
{
BinaryTreeNode* pNode = new BinaryTreeNode();
pNode->m_nValue = value;
pNode->m_pLeft = nullptr;
pNode->m_pRight = nullptr;
pNode->m_pParent = nullptr;
return pNode;
} void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
{
if(pParent != nullptr)
{
pParent->m_pLeft = pLeft;
pParent->m_pRight = pRight;
if(pLeft != nullptr)
pLeft->m_pParent = pParent;
if(pRight != nullptr)
pRight->m_pParent = pParent;
}
} void PrintTreeNode(BinaryTreeNode* pNode)
{
if(pNode != nullptr)
{
printf("value of this node is: %d\n", pNode->m_nValue); if(pNode->m_pLeft != nullptr)
printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
else
printf("left child is null.\n"); if(pNode->m_pRight != nullptr)
printf("value of its right child is: %d.\n", pNode->m_pRight->m_nValue);
else
printf("right child is null.\n");
}
else
{
printf("this node is null.\n");
}
printf("\n");
} void PrintTree(BinaryTreeNode* pRoot)
{
PrintTreeNode(pRoot); if(pRoot != nullptr)
{
if(pRoot->m_pLeft != nullptr)
PrintTree(pRoot->m_pLeft);
if(pRoot->m_pRight != nullptr)
PrintTree(pRoot->m_pRight);
}
} void DestroyTree(BinaryTreeNode* pRoot)
{
if(pRoot != nullptr)
{
BinaryTreeNode* pLeft = pRoot->m_pLeft;
BinaryTreeNode* pRight = pRoot->m_pRight;
delete pRoot;
pRoot = nullptr;
DestroyTree(pLeft);
DestroyTree(pRight);
}
}
int main(int argc, char* argv[])
{
Test1_7();
Test8_11();
Test12_15();
Test16();
}

剑指offer笔记面试题8----二叉树的下一个节点的更多相关文章

  1. 【剑指offer】面试题 8. 二叉树的下一个结点

    面试题 8. 二叉树的下一个结点 NowCoder 题目描述 给定一棵二叉树和其中的一个结点,如何找出中序遍历顺序的下一个结点?树中的结点除了有两个分别指向左右子结点的指针以外,还有一个指向父结点的指 ...

  2. 剑指Offer(书):二叉树的下一个节点

    题目:给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 分析:若一个节点有右子树,那么他的下一个节点就是他右子树中 ...

  3. 《剑指offer》面试题39 二叉树的深度(java)

    摘要: 今天翻到了<剑指offer>面试题39,题目二中的解法二是在函数的参数列表中通过指针的方式进行传值,而java是没有指针的,所以函数要进行改造.然而我翻了下别人的java版本(我就 ...

  4. 剑指offer笔记面试题7----重建二叉树

    题目:输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如,输入前序遍历序列{1, 2, 4, 7, 3, 5, 6, 8}和中序遍历序列 ...

  5. 【剑指offer】面试题 55. 二叉树的深度

    面试题 55. 二叉树的深度 题目一:二叉树的深度 题目描述:输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. Java 实现 ...

  6. 【剑指offer】面试题 23. 链表中环的入口节点

    面试题 23. 链表中环的入口节点

  7. 《剑指Offer》面试题-重建二叉树

    题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7 ...

  8. 《剑指offer》面试题25 二叉树中和为某一值的路径 Java版

    (判断是否有从根到叶子节点的路径,其和为给定值.记录这些路径.) 我的方法:这道题我是按照回溯的思路去做的,我们需要一个数据结构来保存和删除当前递归函数中添加的值.这里要打印一条路径,我们可以选择Li ...

  9. 《剑指offer》面试题19 二叉树的镜像 Java版

    书中方法:这道题目可能拿到手没有思路,我们可以在纸上画出简单的二叉树来找到规律.最后我们发现,镜像的实质是对于二叉树的所有节点,交换其左右子节点.搞清楚获得镜像的方法,这道题实际上就变成了一道二叉树遍 ...

随机推荐

  1. Leecode_98_Validate_Binary_Search_Tree

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  2. “智慧海绵城市”(SSC)监测评价体系整体解决方案

    一.方案简介 无论是内涝防治.黑臭水体治理,还是海绵城市规划设计及建设.评估,乃至未来智慧城市的建设,都需要有全面.致密.大量的城市水文监测数据和先进模拟仿真技术作基础支撑,唯有如此,决策才有据可依, ...

  3. php mysql_connect 在同一host下多数据库mysql_select_db()的bug .

    操作方法 创建两个数据库test1 test2 同一个host下面 分别在两个数据库中创建表 -- ---------------------------- -- Table structure fo ...

  4. 介绍一款自己实现的rabbit轻量级组件和使用方法

    DotNetCore.RabbitMQ.Extensions介绍 这是一个 基于.NETStandard 2.0的Rabbit轻量级框架,可以让开发人员无需关注底层变动,专注编写业务代码,从而达到便捷 ...

  5. Jmeter性能测试配置

    目录 Jmeter检查点/断言 Jmeter事务 Jmeter集合点 Jmeter检查点/断言 在上一章节中,我们通过调试脚本,通过人工验证脚本可以完成业务功能, 但在性能测试中,我们希望能通过自动验 ...

  6. 改变SecureCRT的背景颜色

    1.在使用secureCRT客户端时,可以连接服务器,默认为白色底. 2.要进行对把底色的白色改为黑色的底色,右击的窗口的位置. 3.下拉菜单中点击 Session Options 4.点击Appea ...

  7. 业级PPTP服务器搭建企

    搭建企业级PPTP服务器   分类: Linux服务篇 undefined 本文收录在企业项目实战系列 一.VPN 介绍 1.介绍 虚拟私人网络(英语:Virtual Private Network, ...

  8. 【RabbitMQ】显示耗时处理进度

    [RabbitMQ]显示耗时处理进度 通过网页提交一个耗时的请求,然后启动处理线程,请求返回.处理线程每完成一部分就给前台推送完成的数量,前端显示进度. 依赖jar <?xml version= ...

  9. 你不会还在用这8个错误的SQL写法吧?

    1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引 ...

  10. 新安装mariadb远程登陆配置及相关问题排查

    前言: 安装过程不再赘述,直接说问题,mysql的远程连接需要解决两个问题:1.允许root用户远程连接.2.允许任意ip远程连接数据库.当然,在测试和解决问题之前,得首先保证你的数据库与远程主机之间 ...