在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次。例如,下图给出了骑士从坐标(1,5)出发,游历棋盘的一种可能情况。

【例1】骑士游历问题。

编写一个程序,对于给定的起始位置(x0,y0),探索出一条路径,沿着这条路径骑士能遍历棋盘上的所有单元格。

(1)编程思路。

采用深度优先搜索进行路径的探索。深度优先搜索用递归描述的一般框架为:

void  dfs(int deep)      //  对deep层进行搜索

{

if  (符合某种要求||已经不能再搜了)

{

按要求进行一些处理,一般为输出;

return ;

}

if   (符合某种条件且有地方可以继续搜索的)   // 这里可能会有多种情况,可能要循环什么的

{

vis[x][y]=1;                       //  表示结点(x,y)已访问到

dfs(deep+1);                    //  搜索下一层

vis[x][y]=0;                      // 改回来,表示结点(x,y)以后可能被访问
        }
    }

定义数组int vis[10][10]记录骑士走到的步数,vis[x][y]=num表示骑士从起点开始走到坐标为(x,y)的格子用了num步(设起点的步数为1)。初始时vis数组元素的值全部为0。

 (2)源程序。

#include <stdio.h>

#include <stdlib.h>

int N,M;

int vis[10][10]={0};

// 定义马走的8个方向

int dir_x[8] = {-1,-2,-2,-1,1,2,2,1};

int dir_y[8] = {2,1,-1,-2,-2,-1,1,2};

void print()

{

int i,j;

for(i=0; i<N; i++)

{

for(j=0; j<M; j++)

printf("%3d ",vis[i][j]);

printf("\n");

}

}

void DFS(int cur_x,int cur_y,int step)

{

if(step==N*M+1 )

{

print();

exit(1);

}

int next_x,next_y;

for(int i=0; i<8; i++)

{

next_x = cur_x+dir_x[i];

next_y = cur_y+dir_y[i];

if (next_x<0 || next_x>=N || next_y<0 || next_y>=M || vis[next_x][next_y]!=0)

continue;

vis[next_x][next_y] = step;

DFS(next_x,next_y,step+1);

vis[next_x][next_y] = 0;

}

}

int main()

{

printf("请输入棋盘的行数和列数(均小于10):");

scanf("%d %d",&N,&M);

printf("请输入出发点坐标:(0—%d,0-%d):",N-1,M-1);

int x0,y0;

scanf("%d%d",&x0,&y0);

vis[x0][y0] = 1;

DFS(x0,y0,2);

return 0;

}

(3)运行效果。

  

 【例2】A Knight's Journey(POJ 2488)

Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Input
3
1 1
2 3
4 3
Sample Output
Scenario #1:
A1

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

(1)编程思路。

同样用深度优先搜索。但由于题目要输出字典序最小的,所以遍历时8个方向的偏移组合顺序为:{-2,-1}, {-2,1}, {-1,-2}, {-1,2}, {1,-2}, {1,2}, {2,-1}, {2,1}。

(2)源程序。

#include<stdio.h>

int dir_x[8] = {-2,-2,-1,-1, 1, 1, 2, 2};

int dir_y[8] = {-1, 1,-2, 2,-2, 2,-1, 1};

int vis[27][27];

int len,x,y;

bool flag;

struct Node

{

int x,y;

}node[1000];

void DFS(int cur_x,int cur_y)

{

if(len==x*y)

{

flag=true;

return ;

}

for(int i=0; i<8; i++)

{

int next_x=cur_x+dir_x[i];

int next_y=cur_y+dir_y[i];

if(next_x>0 && next_x<=x && next_y>0 && next_y<=y && vis[next_x][next_y]!=1)

{

node[len].x=next_x;

node[len].y=next_y;

vis[next_x][next_y]=1;

++len;

DFS(next_x,next_y);

if(len==x*y)

{

flag=true;

return ;

}

--len;

vis[next_x][next_y]=0;

}

}

}

int main()

{

int nCase;

int n,i,j;

scanf("%d",&nCase);

for(n=1; n<=nCase; n++)

{

flag=false;

len=0;

for (i=0;i<27;i++)

for (j=0;j<27;j++)

vis[i][j]=0;

node[0].x=1;

node[0].y=1;

vis[1][1]=1;

scanf("%d%d",&y,&x);

++len;

DFS(1,1);

printf("Scenario #%d:\n",n);

if(flag==false)

{

printf("impossible\n\n");

continue;

}

for(i=0; i<len; i++)

{

printf("%c%d",(node[i].x-1)+'A',node[i].y);

}

printf("\n\n");

}

return 0;

}

DFS(二):骑士游历问题的更多相关文章

  1. POJ 2488 -- A Knight's Journey(骑士游历)

    POJ 2488 -- A Knight's Journey(骑士游历) 题意: 给出一个国际棋盘的大小,判断马能否不重复的走过所有格,并记录下其中按字典序排列的第一种路径. 经典的“骑士游历”问题 ...

  2. 骑士游历/knight tour - visual basic 解决

    在visual baisc 6 how to program 中文版第七章的练习题上看到了这个问题,骑士游历的问题. 在8x8的国际象棋的棋盘上,骑士(走法:一个方向走两格,另一个方向一格)不重复走完 ...

  3. 骑士游历 - dp

    题目地址:http://www.51cpc.com/web/problem.php?id=1586 Summarize: 1. 题目坐标系所给 x,y与惯用表示横纵坐标相反 2. 搜索超时,使用动规: ...

  4. hiho #1308 : 搜索二·骑士问题

    #1308 : 搜索二·骑士问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:小Ho你会下国际象棋么? 小Ho:应该算会吧,我知道每个棋子的移动方式,马走日象 ...

  5. POJ 3321 Apple Tree dfs+二叉索引树

    题目:http://poj.org/problem?id=3321 动态更新某个元素,并且求和,显然是二叉索引树,但是节点的标号不连续,二叉索引树必须是连续的,所以需要转化成连续的,多叉树的形状已经建 ...

  6. codevs 1219 骑士游历 1997年

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 设有一个n*m的棋盘(2≤n≤50,2≤m≤50),如下图,在棋盘上有一个中国象 ...

  7. poj2488--A Knight&#39;s Journey(dfs,骑士问题)

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31147   Accepted: 10 ...

  8. HihoCoder 1504 : 骑士游历 (矩阵乘法)

    描述 在8x8的国际象棋棋盘上给定一只骑士(俗称“马”)棋子的位置(R, C),小Hi想知道从(R, C)开始移动N步一共有多少种不同的走法. 输入 第一行包含三个整数,N,R和C. 对于40%的数据 ...

  9. 【[Offer收割]编程练习赛13 D】骑士游历(矩阵模板,乘法,加法,乘方)

    [题目链接]:http://hihocoder.com/problemset/problem/1504 [题意] [题解] 可以把二维的坐标转成成一维的; 即(x,y)->(x-1)*8+y 然 ...

随机推荐

  1. 好玩的WPF第四弹:用Viewport2DVisual3D实现3D旋转效果

    原文:好玩的WPF第四弹:用Viewport2DVisual3D实现3D旋转效果 版权声明:转载请联系本人,感谢配合!本站地址:http://blog.csdn.net/nomasp https:// ...

  2. Python 绘图利器 —— ggplot

    安装: 命令行:pip install ggplot 1. 杂项 NameError: name 'ggsave' is not defined. Python ggplot- ggsave func ...

  3. ABP缓存示例

    private readonly ICacheManager _cacheManager; public ProgrammeManage(ICacheManager cacheManager) { _ ...

  4. WPF ListView控件设置奇偶行背景色交替变换以及ListViewItem鼠标悬停动画

    原文:WPF ListView控件设置奇偶行背景色交替变换以及ListViewItem鼠标悬停动画 利用WPF的ListView控件实现类似于Winform中DataGrid行背景色交替变换的效果,同 ...

  5. WPF学习笔记:(二)数据绑定模式与INotifyPropertyChanged接口

    数据绑定模式共有四种:OneTime.OneWay.OneWayToSource和TwoWay,默认是TwoWay.一般来说,完成数据绑定要有三个要点:目标属性是依赖属性.绑定设置和实现了INotif ...

  6. js 评分

    <!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  7. WEB性能优化【资料】

    为了解决近期项目遇到的性能瓶颈,花费不少功夫恶补了web性能的相关优化方案,整理了一些资料,分享给大家. 博客 网页性能管理详解 - 阮一峰的网络日志 页面性能优化的利器 - Timeline - 云 ...

  8. System.Data.SQLite 中GUID的处理

    原文:System.Data.SQLite 中GUID的处理 项目中正好用到System.Data.SQLite,在手持上使用这个数据库,因为要做数据同步,所以表中的主键都是Guid的数据类型. 在数 ...

  9. Upgrade a Non-CDB To a PDB on CDB

    .Stop the cluster database and start database on one node with read noly [oracle@raca1 admin]$ srvct ...

  10. 使用PyQt5编写一个简单的GUI程序(pyside 有 pyside-uic 把ui文件转成py文件,pyside-rcc 把qrc文件转成 py文件导入就行了)

    我做Python窗口界面编程时,经常使用PyQt进行设计.这里简单叙述一下使用PyQt5制作一个简单的图形界面的流程 PyQt的简介以及开发环境的搭建在此不多赘述. 1.       打开Qt Des ...