还有33天就要高考了,我在干啥……

题目概述

一棵有根树,每个节点有权值。

要求把所有节点分成组,具有祖先-后代关系的两个节点不能被分到同一组。

每一组的代价是所包含的节点的最大权值,最小化所有组的代价之和。

题解

想了半天的树剖也没想出来,放弃梦想去看题解……(你怎么不先想想部分分啊喂)

发现是启发式合并。

考虑一条链(1号节点在中间的某个位置)咋做。

这棵树的形状是1号节点下面挂着两条长链。隶属于同一条链的节点都不能放在一组。那么只需要把两条链各自的最大值节点放到一组,各自的次大值节点放到一组……一条链被用完了,另一条中剩下的节点分别自成一组。

那么假如1号节点下面有更多条链呢?只需要合并完两条之后再把第三条合并进去,方法和上面相同。

那么整棵树其实也dfs然后对每个节点这么合并所有的儿子就好了。这个找最大值再找次大值再找次次大值……的数据结构,显然用堆。

如何优化复杂度呢?启发式合并。把每个节点的儿子按照对应堆的大小排个序,然后把小的往大的合并。这个启发式合并吧,和我们熟知的那个启发式合并还不太一样,复杂度非常神奇,合并两个堆之后新堆的大小是原先较大堆的大小,而合并需要的push、pop操作数是原先较小堆的大小。相当于把较小堆的每个元素以\(O(\log n)\)的复杂度“删去”了,“删去”以后就不再对总复杂度造成代价了。总共最多“删去”n个节点,每次复杂度\(O(\log n)\),总复杂度\(O(n\log n)\)。

写代码的时候会陷入僵局——若要保证复杂度正确,对应堆最大的那个儿子不能对复杂度做出贡献,也就是你不能动它的堆。然而全合并完之后,那个堆里面的东西要存在父亲节点对应的堆里面。昨天晚上我懵逼半天之后选择去睡觉,今天上数学课走神的时候才想到咋整……给每个节点设置个“id”,表示对应的堆的编号,这样堆存的地方不用动,交换父亲和最大儿子的id即可。

代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
bool op = 0;
char c;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 200005;
int n, id[N];
ll w[N], ans;
vector <int> son[N];
priority_queue <int> que[N]; bool cmp(int a, int b){
return que[id[a]].size() > que[id[b]].size();
}
void dfs(int u){
vector <int> buf;
for(auto v: son[u])
dfs(v);
sort(son[u].begin(), son[u].end(), cmp);
for(auto v: son[u]){
if(que[id[u]].empty()) swap(id[u], id[v]);
else{
while(!que[id[v]].empty()){
int u_top = que[id[u]].top(), v_top = que[id[v]].top();
que[id[u]].pop(), que[id[v]].pop();
buf.push_back(max(u_top, v_top));
}
for(auto x: buf)
que[id[u]].push(x);
buf.clear();
}
}
que[id[u]].push(w[u]);
} int main(){ read(n);
for(int i = 1; i <= n; i++)
read(w[i]), id[i] = i;
for(int i = 2, f; i <= n; i++)
read(f), son[f].push_back(i);
dfs(1);
while(!que[id[1]].empty())
ans += que[id[1]].top(), que[id[1]].pop();
write(ans), enter; return 0;
}

LuoguP5290 [十二省联考2019]春节十二响 | 启发式合并的更多相关文章

  1. P5290 [十二省联考2019]春节十二响

    题目地址:P5290 [十二省联考2019]春节十二响 骗分方法 如果你实在一点思路也没有,暴力都不会打,那么请考虑一下骗分. 方法一 输出所有 \(M\) 的和. 期望得分:0分. 实际还有5分 方 ...

  2. P5290 [十二省联考2019]春节十二响(堆+启发式合并)

    P5290 [十二省联考2019]春节十二响 从特殊到一般 我们先看链的情况. 我们把点$1$左右的两条子链分别扔入堆里 每次取出两个堆的最大值,把答案累加上更大的那个(另一堆为空则直接加上去). 那 ...

  3. Luogu P5290 / LOJ3052 【[十二省联考2019]春节十二响】

    联考Day2T2...多亏有这题...让我水了85精准翻盘进了A队... 题目大意: 挺简单的就不说了吧...(这怎么简述啊) 题目思路: 看到题的时候想了半天,不知道怎么搞.把样例画到演草纸上之后又 ...

  4. 【堆的启发式合并】【P5290】[十二省联考2019]春节十二响

    Description 给定一棵 \(n\) 个节点的树,点有点权,将树的节点划分成多个集合,满足集合的并集是树的点集,最小化每个集合最大点权之和. Limitation \(1~\leq~n~\le ...

  5. Luogu P5290 [十二省联考2019]春节十二响

    这题是最近看到的今年省选题中最良心的一道了吧 看题+想题+写题都可以在0.5h内解决,送分含义明显啊 首先理解了题意后我们很快就能发现两个点如果要被分在一段那么必须在它们的祖先处合并 首先我们考虑下二 ...

  6. Luogu5290 十二省联考2019春节十二响(贪心+启发式合并)

    考虑链的做法,显然将两部分各自从大到小排序后逐位取max即可,最后将根计入.猜想树上做法相同,即按上述方式逐个合并子树,最后加入根.用multiset启发式合并即可维护.因为每次合并后较小集合会消失, ...

  7. [LOJ3052] [十二省联考 2019] 春节十二响

    题目链接 LOJ:https://loj.ac/problem/3052 洛谷:https://www.luogu.org/problemnew/show/P5290 BZOJ:https://www ...

  8. luogu P5290 [十二省联考2019]春节十二响 优先队列_启发式合并

    思维难度不大,在考上上写的启发式合并写错了,只拿了 60 pts,好难过QAQ 没什么太难的,在考场上想出链的部分分之后很容易就能想到正解.没错,就是非常短的启发式合并.注意一下,写的要漂亮一点,否则 ...

  9. 【题解】Luogu P5290 [十二省联考2019]春节十二响

    原题传送门 每个点维护一个堆,表示这个点及其子树所需的每段内存的空间 搜索时从下向上做启发式合并堆中信息,最后根节点堆中所有内存空间之和就是答案 #include <bits/stdc++.h& ...

随机推荐

  1. MSSQL查询当前登录进程以及执行状态

    --当前连接进程declare @tempTable table (SPID INT,Status VARCHAR(255), Login VARCHAR(255),HostName VARCHAR( ...

  2. 自定义Vue组件打包、发布到npm以及使用

    本文将帮助:将自己写的Vue组件打包到npm进行代码托管,以及正常发布之后如何使用自己的组件. 本文讲述的仅仅是最基础的实现,其他复杂的操作需要非常熟悉webpack的相关知识,作者将继续学习. 先附 ...

  3. Linux下用户管理:创建用户指定密码

    首先我们来了解下Linux下用户管理的概念: 如上图所示,左边的一列表示用户名,中间的一列表示用户组,最右边的一列表示的是家目录.用户名我们这里处于简单就,添加了root,xm,xh三个用户.用户组和 ...

  4. Ubuntu安装DaVinci Resolve

    安装DaVinci Resolve所需依赖 sudo apt install libssl1.0.0 ocl-icd-opencl-dev fakeroot xorriso 下载MakeResolve ...

  5. WebUI自动化测试框架

    基于Python+Selenium+Unittest+Ddt+HTMLReport 框架结构: Business:业务相关公共模块,如登录 Common:业务无关公共模块,如读取文件 PageObje ...

  6. PHP注释标记整理

    什么是注释标记 我们在平常写代码或看别人写的代码时, 在方法的说明注释中经常会有这样的注释: /** * @param $num * @return array */ 上面的@param @retur ...

  7. 使用响应的json数据判断订单查询是否成功;

    #查询中通快递import requestsrr=requests.session()headers={"User-Agent": "Mozilla/5.0 (Windo ...

  8. Leetcode53_Spiral_Matrix

    Spiral_Matrix https://leetcode-cn.com/problems/spiral-matrix/ //当行数只有一行: 1. n = 1; m -> 0; //当列数只 ...

  9. Linux 下 make 的时候,老是一堆warning

    用下面的方法只显示error : 1) export CFLAGS="-w" 2) ./configure 3) make

  10. INVERSION包

    1.安装该包 if (!requireNamespace("BiocManager", quietly = TRUE))install.packages("BiocMan ...