本文实现了李航教授的《统计学习方法》一书中第4章朴素贝叶斯法中的算法,包括算法4.1(朴素贝叶斯算法)和在此基础上改进的贝叶斯估计。文末整理了在实现算法过程中遇到问题记录的笔记。

朴素贝叶斯法



首先训练朴素贝叶斯模型,对应算法4.1(1),分别计算先验概率及条件概率,分别存在字典priorP和condP中(初始化函数中定义)。其中,计算一个向量各元素频率的操作反复出现,定义为count函数。

# 初始化函数定义了先验概率和条件概率字典,并训练模型
def __init__(self, data, label):
self.priorP = {}
self.condP = {}
self.train(data, label)

count函数,输入一个向量,输出一个字典,包含各元素频率

# 给一个向量,返回字典,包含不同元素的频率。可以引用collections中的Counter函数来实现
# 这个函数可以改进,懒得弄了
def count(self, vec):
np.array(vec)
keys = np.unique(vec)
p = {}
for key in keys:
n = np.sum(np.isin(vec, key) + 0) # 加0可以使布尔向量变为0-1向量
p[key] = n/len(vec) # 计算频率
return p

训练函数,关于condP的保存下面有详细说明

def train(self, data, label):
m, n = np.shape(data)
# 计算先验概率
self.priorP = self.count(label)
print("priorP:", self.priorP)
# 计算条件概率
classes = np.unique(label)
for c in classes:
subset = [data[i] for i in range(m) if label[i] == c] # 取Y=ck的子集
for j in range(n): # 遍历每一个特征,分别求条件概率
self.condP[str(c)+" "+str(j)] = self.count([x[j] for x in subset])
print("condP:", self.condP)

对于条件概率condP的保存,将每个特征关于Y=ck的条件概率都存为一个字典,再存入字典condP中,key设为 “ck j” ,其中 ck 为 Y 的类别,j 表示第 j 个特征。训练例4.1得到的模型如下, condp中的'-1 0' 项即表示Y=-1条件下,P(x0=1)=0.5, P(x0=2)=0.333, P(x0=3)=0.166. 为了显示方便,只给出了小数点后3位。

priorP: {-1: 0.4, 1: 0.6}
condP: {'-1 0': {1: 0.5, 2: 0.333, 3: 0.166},
'-1 1': {'L': 0.166, 'M': 0.333, 'S': 0.5},
'1 0': {1: 0.222, 2: 0.333, 3: 0.444},
'1 1': {'L': 0.444, 'M': 0.444, 'S': 0.111}}

训练之后,对给定X进行预测,结果保存在字典preP中

def predict(self, x):
preP = {}
for c in self.priorP.keys():
preP[c] = self.priorP[c]
for i, features in enumerate(x):
preP[c] *= self.condP[str(c)+" "+str(i)][features]
print("probability: ", preP)
print("prediction: ", max(preP, key=preP.get))

结果:

probability:  {-1: 0.06666666666666667, 1: 0.02222222222222222}
prediction: -1

贝叶斯分类

考虑到概率可能为0,在随机变量各个取值的频数上赋予一个正数lamda,lamda为0时即为极大似然估计;lamda取1时称为拉普拉斯平滑。

先验概率变为(a)

条件概率变为(b)

在之前的算法基础上改进,添加一个字典变量rangeOfFeature来保存每个特征的取值个数,定义在初始化函数中。

self.rangeOfFeature = {}  # 保存每个特征的取值个数

公式(a)和(b)形式相同,将 K 或Sj 作为参数传入count函数,lamda缺省为0:

def count(self, vec, classNum, lamda=0):
keys = set(vec)
p = {}
for key in keys:
n = np.sum(np.isin(vec, key) + 0)
p[key] = (n+lamda)/(len(vec)+classNum*lamda)
return p

训练函数变为

def train(self, data, label, lamda=0):
m, n = np.shape(data)
# 计算rangeOfFeature
for j in range(n):
self.rangeOfFeature[j] = len(set([x[j] for x in data]))
classes = set(label)
# 计算先验概率
self.priorP = self.count(label, len(classes), lamda)
print("priorP:", self.priorP)
# 计算条件概率
for c in classes:
subset = [data[i] for i in range(m) if label[i] == c]
for j in range(n):
self.condP[str(c)+" "+str(j)] = self.count([x[j] for x in subset], self.rangeOfFeature[j], lamda)
print("condP:", self.condP)

其他不变,对之前的实例运行

bayes = Bayes(dataSet, labels, 1)
bayes.predict([2, "S"])

结果如下:

probability:  {1: 0.0326797385620915, -1: 0.06100217864923746}
prediction: -1
笔记
  • 贝叶斯定理

  • max(dict, key = dict.get) 获得字典dictvalue最大的值的键

  • bool型列表转换为0-1

    • 变量后加0
    • booldata.astype(int) 类型转换
  • for i, value in enumerate(['A', 'B', 'C']): 把list变成索引-元素对用enumerate函数,这样就可以在for循环中同时迭代索引和元素本身

  • [a[j] for a in data] 取data第 j 列

  • np.isin(a,b) 判断a中每个元素是否在b中,返回与a形状相同的bool数组

  • np.unique(a) 去重并排序

代码下载:3-Bayes.py

统计学习方法(李航)朴素贝叶斯python实现的更多相关文章

  1. 朴素贝叶斯python代码实现(西瓜书)

    朴素贝叶斯python代码实现(西瓜书) 摘要: 朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候, 使用起来非常的方便.原理简单,训练效率高,拟合效果 ...

  2. 机器学习:朴素贝叶斯--python

    今天介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素贝叶斯方 ...

  3. 朴素贝叶斯python小样本实例

    朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据朴素贝叶斯决策理论的核心思想:选择具有最高概率的决策朴素贝叶斯的一般过程(1) ...

  4. 朴素贝叶斯python实现

    概率论是非常多机器学习算法基础,朴素贝叶斯分类器之所以称为朴素,是由于整个形式化过程中仅仅做最原始.简单的如果. (这个如果:问题中有非常多特征,我们简单如果一个个特征是独立的.该如果称做条件独立性, ...

  5. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  6. 统计学习方法与Python实现(三)——朴素贝叶斯法

    统计学习方法与Python实现(三)——朴素贝叶斯法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设 ...

  7. 统计学习方法——第四章朴素贝叶斯及c++实现

    1.名词解释 贝叶斯定理,自己看书,没啥说的,翻译成人话就是,条件A下的bi出现的概率等于A和bi一起出现的概率除以A出现的概率. 记忆方式就是变后验概率为先验概率,或者说,将条件与结果转换. 先验概 ...

  8. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

  9. 统计学习1:朴素贝叶斯模型(Numpy实现)

    模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\ ...

随机推荐

  1. PC-lint 简明教程(C/C++静态代码检查工具)

    前言 PC-lint是一款小而强大的C/C++静态代码检查工具,它可以检查未初始化变量,数组越界,空指针等编译器很难发现的潜在错误.在很多专业的软件公司如Microsoft,PC-Lint检查无错误无 ...

  2. QT5---应用程序发布(使用windeployqt和NSIS)

      采用动态编译的方式发布程序,即release版本. 找齐动态依赖库(.dll) 方法一   用Dependency Walker这个工具去找少了那些dll,不过这个工具也不怎么靠谱,一个比较靠谱但 ...

  3. Qt 设置背景图片3种方法(三种方法:QPalette调色板,paintEvent,QSS)

    方法1. setStylSheet{"QDialog{background-image:url()"}}  //使用styleSheet 这种方法的好处是继承它的dialog都会自 ...

  4. 浅析 C++ 调用 Python 模块

    浅析 C++ 调用 Python 模块 作为一种胶水语言,Python 能够很容易地调用 C . C++ 等语言,也能够通过其他语言调用 Python 的模块. Python 提供了 C++ 库,使得 ...

  5. Dedecms 中,获取某一栏目所有子栏目

    以前从来没写过递归(其实想想,对算法完全没概念),刚好有这个需求,试着写了一下,发现也挺容易的,特别记录一下. 数据库是dedecms默认的,dede_arctype是保存栏目的表,reid是栏目的父 ...

  6. vue补充

    一.安装vue-cli脚手架 1.淘宝镜像下载 用淘宝的国内服务器来向国外的服务器请求,我们向淘宝请求,而不是由我们直接向国外的服务器请求,会大大提升请求速度,使用时,将所有的npm命令换成cnpm即 ...

  7. SYN1618型 高精度天文时间同步系统

       SYN1618型 高精度天文时间同步系统 产品概述 SYN1618型 高精度天文时间同步系统是由西安同步电子科技有限公司精心设计.自行研发生产的一款高精度的时频频率标准设备,接收GPS.GLON ...

  8. Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset

    一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...

  9. docker 获取镜像

    之前提到过,Docker Hub 上有大量的高质量的镜像可以用,这里我们就说一下怎么获取这些镜像. 从 Docker 镜像仓库获取镜像的命令是 docker pull.其命令格式为: docker p ...

  10. Codeforces Gym101505G:Orchard Division(扫描线+线段树第k大)

    题目链接 题意 给出一个m*m的地图,上面有n个点,现在需要用一个自定义面积的矩形笼罩住恰好n/2个点,并且这个矩形需要有一个点在至少一个角落上,问这个矩形最小的面积是多少. 思路 有点类似于扫描线. ...