简单的量子算法(二):Simon's Algorithm
前情回顾:
简单的量子算法(一):Hadamard 变换、Parity Problem
好的,现在开始正版的故事,Simon’s Algorithm
问题:
有一个secret string,是n位的0,1串 \(s \in \{0,1 \} ^n\)
现在有一个黑盒子,f(x),我们对他唯一的了解就是 \(f(x)=f(x \oplus s)\) ,输入的x也是n位的0,1串 \(x \in \{0,1 \} ^n\)
请问,要多少次,我们可以找到这个secret string?
经典解法:
如果我们能找到 \(x\) 和 \(x \oplus s\) ,那么非常容易,就可以得到s,只要 \(x\oplus x\oplus s\) 。
那么如果找到两个输入拥有相同的输出呢?
这个问题其实是另一个大家都很熟悉的问题的变形,一群人中,要多少人就有两个人的生日是相同的,印象中,23人两个人的生日是相同的概率就大于50%了,如果有60个人,那么两个人生日相同的概率就超过99%了。
这个问题和生日问题的解法是一样的,就不再累述了,想要知道的请搜索生日问题,在这里,我们给出一个大概的答案,是 \(2^{n/2}\) c次。
量子解法:
量子解法一共有三步:
- set up random superposition $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$
- Fourier Sample to get a random y: \(y·s=0 (\mod 2)\)
- repeat step n-1 times to generate n-1 linear equation.
接下来,我们来一步一步的看每个步骤在做什么,以及怎么做:
第一步,制造叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ ,这个可以通过图a实现。
首先通过第一个\(H ^{\otimes n}\) 门,我们n比特的 \(|0\rangle\) 就成功的变成了叠加态 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle $
和 \(|b\rangle\) 一起通过 \(U_f\) ,得到的结果是 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle|b\oplus f(x) \rangle $
测量 \(|b\oplus f(x) \rangle\) ,只有结果是测量结果的 \(|x\rangle\)还在,其他的 \(|x\rangle\) 都会坍缩,基于这个黑盒子的特性,那么只有 $|r\rangle $ 和 \(|r \oplus s \rangle\) 会留下来,因为他们的f(x)是一样的,r是任意的一个序列,测量的结果对应哪个r就是哪个r。
至此我们得到了想要的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$
第二步,Fourier Sampling
对我们得到的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ Fourier Sampling
再次通过\(H ^{\otimes n}\) 我们能得到什么?
依照我们在简单的量子算法(一)中的结论,我们知道 \(H^{\otimes n} |u\rangle = \sum_x \frac{-1^{u·x}}{2^{\frac{n}{2}}} |x\rangle\) 。
那么
\[\begin{align} H^{\otimes n} ( \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle) &= \frac{1}{\sqrt2}\sum_x \frac{-1^{r·x}}{2^{n/2}} |x\rangle+\frac{1}{\sqrt2}\sum_x \frac{-1^{(r\oplus s)·x}}{2^{n/2}} |x\rangle \\ &=\sum_x (\frac{-1^{r·x}}{2^{(n+1)/2}}+\frac{-1^{(r\oplus s)·x}}{2^{(n+1)/2}}) |x\rangle \\ &= \sum_x\frac{1^{r·x}+(-1)^{(r\oplus s)·x}}{2^{(n+1)/2}}|x\rangle \end{align}\]
此时,我们的问题已经集中在了 \(1^{r·x}+(-1)^{(r\oplus s)·x}\) 上。
\((-1)^{(r\oplus s)·x}\) 可以写成\((-1)^{s·x}*(-1)^{r·x}\) (至于为什么可以,大家可以试一下都是按位操作,一共也就4种可能
那么每种可能的概率的公式就可以写成\(\frac{((-1)^{s·x}+1)*(-1)^{r·x}}{2^{(n+1/2)}}\)
如果 \(s·x=0\) 那么,这个概率正好为 \(\frac{(-1)^{r·z}}{2^{(n-1)/2}}\)
如果 \(s·x=-1\) 那么,这个概率正好为0
那么这又说明了什么呢?
这个说明只要我们测量 \(|x\rangle\) ,那么我们得到的x一定是 \(s·x=0\) 的,因为不为0的都被抵消了。
那么得到了x,又意味着什么呢?
\(s·x=0\) 事实上我们是得到了一个等式 $s_1x_1+s_2x_2+……+s_nx_n =0 \mod 2 $
第三步:
如果我们把第一次测量得到的x编号为 \(x^1\) ,那么我们得到了等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
第二次测量,得到等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
以此类推,测量n-1次,得到了n-1个等式的方程式组。
$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
……
$s_1x_1^{n-1}+s_2x_2^{n-1}+……+s_nx_n^{n-1} =0 \mod 2 $
n-1个等式,n个未知数( \(s_1,s_2,……,s_n\) ),一般来说会有两组解,一组是全零的平凡解,这个是我们不要的,而另一组解就是我们的答案 \(s\) 。
成功的概率:
上述的解方程有一个前提,那就是这是一个线性方程组,如果这个不是线性的,那么测量n-1次是不可能得答案的。
那么我测量得到的x组成的方程是线性方程的概率是多少呢?
我们可以列一个表格来看看:
失败的情况 | 失败的概率 | 成功的概率 | |
---|---|---|---|
\(x^1\) | 0 | \(\frac{1}{2^{n-1}}\) | \(1-\frac{1}{2^{n-1}}\) |
\(x^2\) | 0、 \(x^1\) | \(\frac{2}{2^{n-1}}\) | \(1-\frac{1}{2^{n-2}}\) |
\(x^3\) | 0 、 \(x^1\) 、\(x^2\) 、\(x^1+x^2\) | \(\frac{4}{2^{n-1}}\) | \(1-\frac{1}{2^{n-3}}\) |
…… | …… | ………… | \(1-\frac{1}{2^{n-1}}\) |
\(x^{n-1}\) | 0 、 \(x^1\) ……\(x^1+x^2\)……\(x^1+x^2+……+x^n-2\) | \(\frac{2^{n-2}}{2^{n-1}}\) | \(1-\frac{1}{2}\) |
每次的测量失败的情况分为以下三种情况:
- 测量出来全是0
- 测量出来结果和前面的是一样的
- 测量出来的结果是前面测量结果的线性组合
因为这里算的成功概率都是独立的成功概率,所以要算整体的成功概率是他们的乘积
\(\frac{1}{2}*\frac{3}{4}*\frac{7}{8}*……*\frac{2^{n-1}-1}{2^{n-1}}\)
上面这个式子求极限是一个q series的问题,感兴趣的朋友可以去查一下怎么求解,这里直接给出概率,约等于0.28878
注意:
大家是不是以为这样子就万事大吉了?
No,这里还有一个需要注意的地方,可能很多朋友已经意识到了,量子态不是测量完就坍塌吗?为什么可以测量n-1次?
事实上,这是把第一部分给做了n-1次,这样你才可以有n-1个 \(|x\rangle\) 给你测量找出满足线性条件的x。
参考资料:
Quantume Mechanics & Quantume Computation Lecture 8
简单的量子算法(二):Simon's Algorithm的更多相关文章
- 简单的量子算法(一):Hadamard 变换、Parity Problem
Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- [转]EM算法(Expectation Maximization Algorithm)详解
https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...
- Floyd判圈算法 Floyd Cycle Detection Algorithm
2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...
- 如何简单解释 MapReduce算法
原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...
- 分布式共识算法 (二) Paxos算法
系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...
- 机器学习算法-K-NN的学习 /ML 算法 (K-NEAREST NEIGHBORS ALGORITHM TUTORIAL)
1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是 ...
- sklearn简单实现机器学习算法记录
sklearn简单实现机器学习算法记录 需要引入最重要的库:Scikit-learn 一.KNN算法 from sklearn import datasets from sklearn.model_s ...
- 史上最简单的排序算法?看起来却满是bug
大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...
随机推荐
- visual studio 2017 添加MSDN
原文:visual studio 2017 添加MSDN 1.启动VS2017的安装软件,点击更改,进行MSDN帮助组件添加安装. 2.在单个组件中找到"Help Viewer", ...
- 使用QPainter的drawPixmap()绘制多幅图片 good
众所周知,使用QLabel的setPixmap()就可以将图片显示出来,做视屏解码后显示也可以如此.但是为何我今天还要费力使用基函数drawPixmap()来做绘图?理由有这么些吧: 1.使用QLab ...
- 打开并锁定一个文件(使用LockFile API函数)
var aHandle : THandle; aFileSize : Integer; aFileName : String; procedure TForm1.Button3Click(Sender ...
- java关键字-final
final特点: 1:这个关键字是一个修饰符,可以修饰类,方法,变量. 2:被final修饰的类是一个最终类,不可以被继承. 3:被final修饰的方法是一个最终方法,不可以被覆盖. 4:被final ...
- Ubuntu --- lamp环境下安装php扩展和开启apache重写
安装教程参考:http://www.laozuo.org/8303.html 1.安装php扩展(比如安装mbstring) 先搜索相关的包 apt-cache search php7 再安装 apt ...
- 02、MySQL—数据库基本操作
数据库是数据存储的最外层(最大单元) 1.创建数据库 基本语法:create database 数据库名字 [库选项]; 范例:使用create database 创建数据库 库选项:数据库的相关属性 ...
- 拉格朗日乘子法 - KKT条件 - 对偶问题
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...
- 论文研读Unet++
Unet++: A Nested U-Net Architecture for Medical Image Segmentation Unet++ 论文地址 这里仅进行简要介绍,可供读者熟悉其结构与特 ...
- 小白也能看懂的 Laravel 核心概念讲解
自动依赖注入 什么是依赖注入,用大白话将通过类型提示的方式向函数传递参数. 实例 1 首先,定义一个类: /routes/web.php class Bar {} 假如我们在其他地方要使用到 Bar ...
- 网络学习笔记(三):HTTP缓存
HTTP缓存是一种保存资源副本并在下次请求时直接使用该副本的技术,合理的使用缓存可以有效的提升web性能. 浏览器将js文件.css文件.图片等资源缓存,当下次请求这些资源时,可以不发送网络请 ...