题意:

  给出连续的1-n个珠子的涂色方法 a[i](1<=i<=n), 问长度为n的珠链共有多少种涂色方案

分析:

  可以得到DP方程: DP[n] = ∑(i=1,n) (DP[n-i]*a[i]).

  该方程为卷积形式,故 CDQ + FFT

  

  CDQ: 将 [l,r] 二分, 先得到[l,mid]的答案,再更新[l,mid]对[mid+1,r]的贡献.

       对任意 DP[j](mid+1 <= j <= r), [l,mid] 对其贡献为 ∑(i=l,mid) (DP[i]*a[j - i]) , 即多项式 DP 与 a 相乘后次数为j项.

  FFT: 优化多项式相乘.

(1 和 l 看不清的也就这破博客园了,代码还是粘下来的好,= =)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const double PI = * atan(1.0);
const int MAXN = ;
const int MOD = ;
struct Complex
{
double x, y;
Complex(double xx = 0.0, double yy = 0.0) : x(xx), y(yy) {}
Complex operator - (const Complex &b) const
{
return Complex(x - b.x, y - b.y);
}
Complex operator + (const Complex &b) const
{
return Complex(x + b.x, y + b.y);
}
Complex operator * (const Complex &b) const
{
return Complex(x*b.x - y*b.y, x*b.y + y*b.x);
}
};
void Change(Complex y[], int len)
{
int i, j, k;
for (i = , j = len/; i < len-; i++)
{
if (i < j) swap(y[i], y[j]);
k = len / ;
while (j >= k)
{
j -= k;
k /= ;
}
if (j < k) j += k;
}
}
void FFT(Complex y[], int len,int on)
{
Change(y, len);
for (int h = ; h <= len; h <<= )
{
Complex wn( cos(-on**PI/h), sin(-on**PI/h) );
for (int j = ; j < len; j +=h)
{
Complex w(, );
for (int k = j; k < j + h/; k++)
{
Complex u = y[k];
Complex t = w * y[k + h/];
y[k] = u + t;
y[k + h/] = u - t;
w = w * wn;
}
}
}
if (on == -)
for (int i = ; i < len; i++)
y[i].x /= len;
}
int t, n;
Complex x[MAXN], y[MAXN];
int a[MAXN/], dp[MAXN/];
void CDQ(int l, int r)
{
if (l == r) { dp[l] = (dp[l] + a[l]) % MOD; return; }
int mid = (l + r) >> ;
CDQ(l, mid);//处理前半段
int len = , len1 = mid - l + , len2 = r - l + ;
while(len < len2) len <<= ;
for (int i = ; i < len1; i++) x[i] = Complex(dp[i + l], );
for (int i = len1; i < len; i++) x[i] = Complex(, );
for (int i = ; i < len2; i++) y[i] = Complex(a[i], );
for (int i = len2; i < len; i++) y[i] = Complex(, );
FFT(x, len, );
FFT(y, len, );
for (int i = ; i < len; i++) x[i] = x[i] *y[i];
FFT(x, len, -);
for (int i = mid+; i <= r; i++)//更新贡献
{
dp[i] = (int)(dp[i] + x[i - l].x + 0.5) %MOD;
}
CDQ(mid + , r);//处理后半段
}
int main()
{
while(~scanf("%d",&n) && n)
{
for (int i = ; i <= n; i++)
{
scanf("%d",&a[i]);
a[i] %= MOD;
dp[i] = ;
}
CDQ(, n);
printf("%d\n", dp[n]);
}
}

HDU 5730 - Shell Necklace的更多相关文章

  1. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  2. HDU 5730 Shell Necklace(CDQ分治+FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...

  3. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  4. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

  5. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  6. hdu 5730 Shell Necklace fft+cdq分治

    题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...

  7. #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)

    Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...

  8. HDU.5730.Shell Necklace(分治FFT)

    题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...

  9. hdu Shell Necklace 5730 分治FFT

    Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell neckl ...

随机推荐

  1. PHP学习笔记十六【方法】

    <?php //给一个函数传递基本数据类型 $a=90; $b=90.8; $c=true; $d="hello world"; function test1($a,$b,$ ...

  2. OS X EI Capitan 10.11.4中sudo无法起作用的解决方法

    mac升级到OSX EI Capitan 10.11.4后sudo命令无法起作用,执行任何操作总是显示Operation denied.这是因为在10.11.4中引入了Rootless机制,即就算是R ...

  3. 当nginx 500 伪静态错误时,记录解决方法rewrite or internal redirection cycle while processing

    错误日志::rewrite or internal redirection cycle while processing "/index.php/index.php/index.php/in ...

  4. postman接口测试工具3.0版本的坑

    今天用postman接口测试工具3.0版本被坑,找了半天,原来postman这个新版本有个坑啊 下面的get参数,第一行不管你填不填,都是无效的,可能是postman的一个bug吧

  5. Windows10 磁盘活动时间百分之百导致系统卡顿解决方法

    最近电脑边的特别慢,打开任务管理器发现是磁盘活动时间时不时的就会变成100%.起初是以为硬盘出问题了,后来网上查了一下才发现很多人都遇到过这个问题,其原因就是Windows的SuperFetch和家庭 ...

  6. makefile 单独编译一个文件

    #!/sh/bin .SUFFIXES:.c.o CDIR = /Users/shelley/c BINDIR = $(CDIR)/bin CC = gcc CFLAGS = -g -O RM = r ...

  7. PHP PSR-2 代码风格规范 (中文版)

    代码风格规范 本篇规范是 PSR-1 基本代码规范的继承与扩展. 本规范希望通过制定一系列规范化PHP代码的规则,以减少在浏览不同作者的代码时,因代码风格的不同而造成不便. 当多名程序员在多个项目中合 ...

  8. Taglib、EL、OGNL

    Taglib.EL.OGNL 阅读目录 1. Taglib(tag library) 标签库 2. EL(Expression Language) 表达式 3. OGNL(Object-Graph N ...

  9. Android自学学习资料

    最近在自学Android编程,在网上看了一些博客和视频教程,觉得比较好的分享一下,继续学习,gangbade~ 国外android官网总是出现连不上的情况,如果你不想FQ的话,这里github上可以直 ...

  10. ubuntu下安装fiddler

    因为工作中需要用到fiddler工具  现在工作环境迁移到ubuntu14 下  发现fiddler只支持windows网上也有很多推荐 号称可以代替fiddler   但因为功能使用上比较习惯  并 ...