1.概念理解

在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)

四种调用模式:

同步:所谓同步,就是在发出一个功能调用时,在没有得到结果前,该调用就不返回。也就是必须一件

一件做事,等前一件做完了才能做另一件。

例如在C/S模式的某个流程中,你服务器提交了某个请求,在服务器处理完毕返回结果期间客户端什么

也不能做。

异步:异步概念和同步相对。当一个异步过程调用发出后,调用者不会立刻得到结果。调用者在发出

调用后可以继续做自己的事,被调用者通过状态、通知来通知调用者,或者通过回调函数处理这个调用。

阻塞:阻塞调用是指调用结果返回前,当前线程会被挂起(当前线程处于非可执行状态,在这个状态下,

CPU不会给线程分配时间片,即线程暂停运行),函数只有在得到结果后才回返回。

非阻塞:非阻塞和阻塞的概念相对,是指不能立刻得到借过前,该函数不会阻塞当前进程,而回立刻返回。

区别:有人会把同步和阻塞调用等同起来,实际上他们是不同的,对于同步调用来说,很多时候当前调用

还是激活的,只是从逻辑上当前函数没有返回而已。阻塞的话当前线程会被挂起。

2.Select模型的原理和使用步骤

select(选择)模型是Winsock中最常见的I/O模型。之所以称其为“ select模型”,是由于它的“中心思想”

便是利用select函数,实现对 I/O的管理!利用select函数,我们判断套接字上是否存在数据,或者能否向一

个套接字写入数据。之所以要设计这个函数,唯一的目的便是防止应用程序在套接字处于锁定模式中时,在

一次I/O绑定调用(如send或recv)过程中,被迫进入“锁定”状态;同时防止在套接字处于非锁定模式中时,

产生WSAEWOULDBLOCK错误。除非满足事先用参数规定的条件,否则select函数会在进行I/O操作时锁定。

select的函数原型如下:

int select (
int nfds,
fd_set FAR * readfds,
fd_set FAR * writefds,
fd_set FAR * exceptfds,
const struct timeval FAR * timeout
);

其中,第一个参数nfds会被忽略。之所以仍然要提供这个参数,只是为了保持与早期的Berkeley套接字应用程

序的兼容。大家可注意到三个 fd_set参数:一个用于检查可读性(readfds),一个用于检查可写性(writefds),

另一个用于例外数据( excepfds)。从根本上说,fdset数据类型代表着一系列特定套接字的集合。其中,

readfds集合包括符合下述任何一个条件的套接字:

■ 有数据可以读入。
■ 连接已经关闭、重设或中止。
■ 假如已调用了listen,而且一个连接正在建立,那么accept函数调用会成功。
writefds集合包括符合下述任何一个条件的套接字:
■ 有数据可以发出。
■ 如果已完成了对一个非锁定连接调用的处理,连接就会成功。
最后,exceptfds集合包括符合下述任何一个条件的套接字:
■ 假如已完成了对一个非锁定连接调用的处理,连接尝试就会失败。
■ 有带外(out-of-band,OOB)数据可供读取。

例如,假定我们想测试一个套接字是否“可读”,必须将自己的套接字增添到readfds集合,再等待select函数

完成。select完成之后,必须判断自己的套接字是否仍为readfds集合的一部分。若答案是肯定的,便表明该套

接字“可读”,可立即着手从它上面读取数据。在三个参数中(readfds、writedfss和exceptfds),任何两个都

可以是空值(NULL);但是,至少有一个不能为空值!在任何不为空的集合中,必须包含至少一个套接字句柄;

否则, select函数便没有任何东西可以等待。最后一个参数timeout对应的是一个指针,它指向一个timeval结构,

用于决定select最多等待 I / O操作完成多久的时间。如 timeout是一个空指针,那么select调用会无限期地“锁定”

或停顿下去,直到至少有一个描述符符合指定的条件后结束。对timeval结构的定义如下:

struct timeval {
long tv_sec;
long tv_usec;

} ;

若将超时值设置为(0,0),表明select会立即返回,允许应用程序对 select操作进行“轮询”。出于对性能方面

的考虑,应避免这样的设置。select成功完成后,会在 fd_set结构中,返回刚好有未完成的I/O操作的所有套接字

句柄的总量。若超过timeval设定的时间,便会返回0。不管由于什么原因,假如select调用失败,都会返回SOCKET_ERROR。

用select对套接字进行监视之前,在自己的应用程序中,必须将套接字句柄分配给一个集合,设置好一个或全部

读、写以及例外 fd_set结构。将一个套接字分配给任何一个集合后,再来调用select,便可知道一个套接字上是

否正在发生上述的I/O活动。Winsock提供了下列宏操作,可用来针对I/O活动,对 fd_set进行处理与检查:

■ FD_CLR(s, *set):从s e t中删除套接字 s。
■ FD_ISSET(s, *set):检查 s是否s e t集合的一名成员;如答案是肯定的是,则返回 T R U E。
■ FD_SET(s, *set):将套接字 s加入集合 s e t。
■ F D _ Z E R O ( * s e t ):将s e t初始化成空集合。

例如,假定我们想知道是否可从一个套接字中安全地读取数据,同时不会陷于无休止的“锁定”状态,便可使用

FD_SET宏,将自己的套接字分配给fd_set集合,再来调用select。要想检测自己的套接字是否仍属 fd_read集合

的一部分,可使用FD_ISSET宏。采用下述步骤,便可完成用select操作一个或多个套接字句柄的全过程:

1) 使用FD_ZERO宏,初始化自己感兴趣的每一个fd_set。
2) 使用FD_SET宏,将套接字句柄分配给自己感兴趣的每个fd_set。
3) 调用select函数,然后等待在指定的fd_set集合中,I/O活动设置好一个或多个套接字句柄。
select完成后,会返回在所有fd_set集合中设置的套接字句柄总数,并对每个集合进行相应的更新。
4) 根据select的返回值,我们的应用程序便可判断出哪些套接字存在着尚未完成(待决)
的I/O操作—具体的方法是使用FD_ISSET宏,对每个fd_set集合进行检查。
5) 知道了每个集合中“待决”的I/O操作之后,对I/O进行处理,然后返回步骤 1 ),继续进

select返回后,它会修改每个fd_set结构,删除那些不存在待决 I / O操作的套接字句柄。这正是我们在上述的步

骤 ( 4 )中,为何要使用FD_ISSET宏来判断一个特定的套接字是否仍在集合中的原因。

3.参考代码

// Select.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <WinSock2.h>
#include <iostream>
using namespace std;

#include <stdio.h>

#pragma comment(lib,"ws2_32.lib")

#define PORT 8000
#define MSGSIZE 255
#define SRV_IP "127.0.0.1"

int g_nSockConn = 0;//请求连接的数目

//FD_SETSIZE是在winsocket2.h头文件里定义的,这里windows默认最大为64
//在包含winsocket2.h头文件前使用宏定义可以修改这个值

struct ClientInfo
{
    SOCKET sockClient;
    SOCKADDR_IN addrClient;
};

ClientInfo g_Client[FD_SETSIZE];

DWORD WINAPI WorkThread(LPVOID lpParameter);

int _tmain(int argc, _TCHAR* argv[])
{//基本步骤就不解释了,网络编程基础那篇博客里讲的很详细了
    WSADATA wsaData;
    WSAStartup(MAKEWORD(2,2),&wsaData);

SOCKET sockListen = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);

SOCKADDR_IN addrSrv;
    addrSrv.sin_addr.S_un.S_addr = inet_addr(SRV_IP);
    addrSrv.sin_family = AF_INET;
    addrSrv.sin_port = htons(PORT);

bind(sockListen,(SOCKADDR*)&addrSrv,sizeof(SOCKADDR));

listen(sockListen,64);

DWORD dwThreadIDRecv = 0;
    DWORD dwThreadIDWrite = 0;

HANDLE hand = CreateThread(NULL,0, WorkThread,NULL,0,&dwThreadIDRecv);//用来处理手法消息的进程
    if (hand == NULL)
    {
        cout<<"Create work thread failed\n";
        getchar();
        return -1;
    }

SOCKET sockClient;
    SOCKADDR_IN addrClient;
    int nLenAddrClient = sizeof(SOCKADDR);//这里用0初试化找了半天才找出错误

while (true)
    {
        sockClient = accept(sockListen,(SOCKADDR*)&addrClient,&nLenAddrClient);//第三个参数一定要按照addrClient大小初始化
        //输出连接者的地址信息
        //cout<<inet_ntoa(addrClient.sin_addr)<<":"<<ntohs(addrClient.sin_port)<<"has connect !"<<endl;

if (sockClient != INVALID_SOCKET)
        {
            g_Client[g_nSockConn].addrClient = addrClient;//保存连接端地址信息
            g_Client[g_nSockConn].sockClient = sockClient;//加入连接者队列
            g_nSockConn++;
        }

}

closesocket(sockListen);
    WSACleanup();

return 0;
}

DWORD WINAPI WorkThread(LPVOID lpParameter)
{
    FD_SET fdRead;
    int nRet = 0;//记录发送或者接受的字节数
    TIMEVAL tv;//设置超时等待时间
    tv.tv_sec = 1;
    tv.tv_usec = 0;
    char buf[MSGSIZE] = "";

while (true)
    {
        FD_ZERO(&fdRead);
        for (int i = 0;i < g_nSockConn;i++)
        {
            FD_SET(g_Client[i].sockClient,&fdRead);
        }

//只处理read事件,不过后面还是会有读写消息发送的
        nRet = select(0,&fdRead,NULL,NULL,&tv);

if (nRet == 0)
        {//没有连接或者没有读事件
            continue;
        }

for (int i = 0;i < g_nSockConn;i++)
        {
            if (FD_ISSET(g_Client[i].sockClient,&fdRead))
            {
                nRet = recv(g_Client[i].sockClient,buf,sizeof(buf),0);

if (nRet == 0 || (nRet == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
                {
                    cout<<"Client "<<inet_ntoa(g_Client[i].addrClient.sin_addr)<<"closed"<<endl;
                    closesocket(g_Client[i].sockClient);

if (i < g_nSockConn-1)
                    {
                        //将失效的sockClient剔除,用数组的最后一个补上去
                        g_Client[i--].sockClient = g_Client[--g_nSockConn].sockClient;
                    }
                }
                else
                {
                    cout<<inet_ntoa(g_Client[i].addrClient.sin_addr)<<": "<<endl;
                    cout<<buf<<endl;
                    cout<<"Server:"<<endl;
                    //gets(buf);
                    strcpy(buf,"Hello!");
                    nRet = send(g_Client[i].sockClient,buf,strlen(buf)+1,0);
                }
            }
        }
    }
    return 0;
}

服务器的主要步骤:

1.创建监听套接字,绑定,监听

2.创建工作者线程

3.创建一个套接字组,用来存放当前所有活动的客户端套接字,没accept一个连接就更新一次数组

4.接收客户端的连接,因为没有重新定义FD_SIZE宏,服务器最多支持64个并发连接。最好是记录下连接数,不要无条件的接受连接

工作线程

工作线程是一个死循环,依次循环完成的动作是:

1.将当前客户端套接字加入到fd_read集中

2.调用select函数

3.用FD_ISSET查看时候套接字还在读集中,如果是就接收数据。如果接收的数据长度为0,或者发生WSAECONNRESET错误,,则

表示客户端套接字主动关闭,我们要释放这个套接字资源,调整我们的套接字数组(让下一个补上)。上面还有个nRet==0的判断,

就是因为select函数会立即返回,连接数为0会陷入死循环。

Windows I/O模型之一:Select模型的更多相关文章

  1. Socket I/O模型之select模型

    socket网络编程中有多种常见的I/O模型: 1.blocking阻塞 2.nonblocking非阻塞 3.I/O multiplexing复用 4.signal driven 5.asynchr ...

  2. linux下多路复用模型之Select模型

    Linux关于并发网络分为Apache模型(Process per Connection (进程连接) ) 和TPC , 还有select模型,以及poll模型(一般是Epoll模型) Select模 ...

  3. 关于 Poco::TCPServer框架 (windows 下使用的是 select模型) 学习笔记.

    说明 为何要写这篇文章 ,之前看过阿二的梦想船的<Poco::TCPServer框架解析> http://www.cppblog.com/richbirdandy/archive/2010 ...

  4. Winsock IO模型之select模型

    之所以称其为select模型是因为它主要是使用select函数来管理I/O的.这个模型的设计源于UNIX系统,目的是允许那些想要避免在套接字调用上阻塞的应用程序有能力管理多个套接字. int sele ...

  5. 转:Windows Socket五种I/O模型

    原文转自:  Windows Socket五种I/O模型 Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模 ...

  6. 【转】Select模型原理

    Select模型原理利用select函数,判断套接字上是否存在数据,或者能否向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据,被迫 ...

  7. Select模型原理

    Select模型原理 利用select函数,推断套接字上是否存在数据,或者是否能向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据, ...

  8. 比较windows下的5种IO模型

    看到一个很有意思的解释: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系.他们的信会被邮递员投递到他们的信箱里. 这和Socket模型非常类似.下面我就以老陈接收信件为例讲解Socke ...

  9. Windows Socket五种I/O模型——代码全攻略(转)

    Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操 ...

  10. windows socket编程select模型使用

    int select(         int nfds,            //忽略         fd_ser* readfds,    //指向一个套接字集合,用来检测其可读性       ...

随机推荐

  1. Contains Duplicate,Contains Duplicate II,Contains Duplicate III

    217. Contains Duplicate Given an array of integers, find if the array contains any duplicates. Your ...

  2. Tornado 模板支持“控制语句”和“表达语句”的表现形式

    Tornado 的模板支持“控制语句”和“表达语句”,控制语句是使用 {% 和 %} 包起来的 例如 {% if len(items) > 2 %}.表达语句是使用 {{ 和 }} 包起来的,例 ...

  3. shopnc怎么开启伪静态 shopnc开启伪静态的方法

    最近要给一个shopnc网站开启伪静态,用的是shopnc b2b2c,在网上搜索了好多shopnc开启伪静态的方法,但都是针对shaopnc c2c的,没有关于shopnc b2b2c的,最后终于找 ...

  4. pcduino通过USB方式刷机

    最近买了块pcduino来玩,一开始也不知道怎么入手使用,就想先学着网上来刷机,可以用TF卡来刷机,也可以用U盘来刷机.由于手上只有优盘,所以采用了第二种方式.具体方法参考了网上. 本文非原创,原文来 ...

  5. dwz分页实现分析

    dwz给我们提供了一个很好的列表UI 我对它的分析后将页面分为四个部分 <form id="pagerForm" method="post" action ...

  6. Tomcat 6.0.32 +Spring dbcp datasource关闭Tomcat出现严重异常

    异常如下: 信息: Pausing Coyote HTTP/ -- :: org.apache.catalina.core.StandardService stop 信息: Stopping serv ...

  7. CSS3----background:-webkit-gradient()渐变效果

    input[type="button"], input[type="button"]:visited { background: -webkit-gradien ...

  8. java中byte数组与int类型的转换(两种方式)

    http://blog.csdn.net/z69183787/article/details/38564219 http://blog.csdn.net/z69183787/article/detai ...

  9. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  10. 【HDU1394】Minimum Inversion Number(线段树)

    大意:n次操作原串查询逆序数,求出所有串中最小的逆序数. 求逆序数属于线段树的统计问题,建立空树,每次进行插点时进行一次query操作即可.n次操作可以套用结论:如果是0到n的排列,那么如果把第一个数 ...