声明:本文章是我整合网上的资料而成的,其中的大部分文字不是我所为的,我所起的作用只是归纳整理并添加我的一些看法。非常感谢引用到的文字的作者的辛勤劳动,所参考的文献在文章最后我已一一列出。

对关注性能的程序开发人员而言,一个好的计时部件既是益友,也是良师。计时器既可以作为程序组件帮助程序员精确的控制程序进程,又是一件有力的调试武器,在有经验的程序员手里可以尽快的确定程序的性能瓶颈,或者对不同的算法作出有说服力的性能比较。

在Windows平台下,常用的计时器有两种,一种是timeGetTime多媒体计时器,它可以提供毫秒级的计时。但这个精度对很多应用场合而言还是太粗糙了。另一种是QueryPerformanceCount计数器,随系统的不同可以提供微秒级的计数。对于实时图形处理、多媒体数据流处理、或者实时系统构造的程序员,善用QueryPerformanceCount/QueryPerformanceFrequency是一项基本功。

本文要介绍的,是另一种直接利用Pentium CPU内部时间戳进行计时的高精度计时手段。以下讨论主要得益于《Windows图形编程》一书,第 15页-17页,有兴趣的读者可以直接参考该书。关于RDTSC指令的详细讨论,可以参考Intel产品手册。本文仅仅作抛砖之用。 
在 Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述两种方法所无法比拟的。

在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用。像这样:

inline unsigned __int64 GetCycleCount() 

__asm RDTSC 
}

但是不行,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31,如下:

inline unsigned __int64 GetCycleCount() 

__asm _emit 0x0F 
__asm _emit 0x31 
}

以后在需要计数器的场合,可以像使用普通的Win32 API一样,调用两次GetCycleCount函数,比较两个返回值的差,像这样:

unsigned long t; 
t = (unsigned long)GetCycleCount(); 
//Do Something time-intensive ... 
t -= (unsigned long)GetCycleCount();

《Windows图形编程》第15页编写了一个类,把这个计数器封装起来。有兴趣的读者可以去参考那个类的代码。作者为了更精确的定时,做了一点小小的改进,把执行RDTSC指令的时间,通过连续两次调用GetCycleCount函数计算出来并保存了起来,以后每次计时结束后,都从实际得到的计数中减掉这一小段时间,以得到更准确的计时数字。但我个人觉得这一点点改进意义不大。在我的机器上实测,这条指令大概花掉了几十到100多个周期,在 Celeron 800MHz的机器上,这不过是十分之一微秒的时间。对大多数应用来说,这点时间完全可以忽略不计;而对那些确实要精确到纳秒数量级的应用来说,这个补偿也过于粗糙了。

我从《Windows图形编程》上把这个类的源码拷贝了下来供大家看看,下面是使用RDTSC指令的CPU时钟循环秒表类:

  1. // Timer.h
  2. #pragma once
  3. inline unsigned __int64 GetCycleCount(void)
  4. {
  5. _asm  _emit 0x0F
  6. _asm  _emit 0x31
  7. }
  8. class KTimer
  9. {
  10. unsigned __int64 m_startcycle;
  11. public:
  12. unsigned __int64 m_overhead;
  13. KTimer(void)
  14. {
  15. m_overhead = 0;
  16. Start();
  17. m_overhead  = Stop();
  18. }
  19. void Start(void)
  20. {
  21. m_startcycle = GetCycleCount();
  22. }
  23. unsigned __int64 Stop(void)
  24. {
  25. return GetCycleCount()-m_startcycle-m_overhead;
  26. }
  27. };

这个方法的优点是:

1.高精度。可以直接达到纳秒级的计时精度(在1GHz的CPU上每个时钟周期就是一纳秒),这是其他计时方法所难以企及的。

2. 成本低。timeGetTime 函数需要链接多媒体库winmm.lib,QueryPerformance* 函数根据MSDN的说明,需要硬件的支持(虽然我还没有见过不支持的机器)和KERNEL库的支持,所以二者都只能在Windows平台下使用(关于DOS平台下的高精度计时问题,可以参考《图形程序开发人员指南》,里面有关于控制定时器8253的详细说明)。但RDTSC指令是一条CPU指令,凡是i386平台下Pentium以上的机器均支持,甚至没有平台的限制(我相信i386版本UNIX和Linux下这个方法同样适用,但没有条件试验),而且函数调用的开销是最小的。

(这里我想说的是:照这样看,跨平台也只能说是操作系统平台,不能跨硬件平台,就是说只能用在Intel Pentium以上的机器)

3. 具有和CPU主频直接对应的速率关系。一个计数相当于1/(CPU主频Hz数)秒,这样只要知道了CPU的主频,可以直接计算出时间。这和 QueryPerformanceCount不同,后者需要通过QueryPerformanceFrequency获取当前计数器每秒的计数次数才能换算成时间。

这个方法的缺点是:

1.现有的C/C++编译器多数不直接支持使用RDTSC指令,需要用直接嵌入机器码的方式编程,比较麻烦。

2.数据抖动比较厉害。其实对任何计量手段而言,精度和稳定性永远是一对矛盾。如果用低精度的timeGetTime来计时,基本上每次计时的结果都是相同的;而RDTSC指令每次结果都不一样,经常有几百甚至上千的差距。这是这种方法高精度本身固有的矛盾。

(这里数据抖动确实是一个大问题,我遇到过这样一种情况,比如测试a和b两种算法,由于数据抖动,有时a比b耗时少,有时b比a耗时少。我想过两种测试办法:

(1)增多测试次数,比如对a和b两种算法各测试10次,看a比b耗时少的次数和b比a耗时少的次数哪个多,以此判定哪个算法效率高。

(2)增大测试数据量,我想一增大测试数据量,算法效率的差异就会显现出来)

关于这个方法计时的最大长度,我们可以简单的用下列公式计算:

自CPU上电以来的秒数 = RDTSC读出的周期数 / CPU主频速率(Hz)

64位无符号整数所能表达的最大数字是1.8×10^19,在我的Celeron 800上可以计时大约700年(书中说可以在200MHz的Pentium上计时117年,这个数字不知道是怎么得出来的,与我的计算有出入)。无论如何,我们大可不必关心溢出的问题。

下面是几个小例子,简要比较了三种计时方法的用法与精度

  1. #include <stdio.h>
  2. #include "KTimer.h"
  3. main()
  4. {
  5. unsigned t;
  6. KTimer timer;
  7. timer.Start();
  8. Sleep(1000);
  9. t = timer.Stop();
  10. printf("Lasting Time: %d/n",t);
  11. }
  12. //Timer2.cpp 使用了timeGetTime函数
  13. //需包含<mmsys.h>,但由于Windows头文件错综复杂的关系
  14. //简单包含<windows.h>比较偷懒:)
  15. //编译行:CL timer2.cpp /link winmm.lib
  16. #include <windows.h>
  17. #include <stdio.h>
  18. main()
  19. {
  20. DWORD t1, t2;
  21. t1 = timeGetTime();
  22. Sleep(1000);
  23. t2 = timeGetTime();
  24. printf("Begin Time: %u/n", t1);
  25. printf("End Time: %u/n", t2);
  26. printf("Lasting Time: %u/n",(t2-t1));
  27. }
  28. //Timer3.cpp 使用了QueryPerformanceCounter函数
  29. //编译行:CL timer3.cpp /link KERNEl32.lib
  30. #include <windows.h>
  31. #include <stdio.h>
  32. main()
  33. {
  34. LARGE_INTEGER t1, t2, tc;
  35. QueryPerformanceFrequency(&tc);
  36. printf("Frequency: %u/n", tc.QuadPart);
  37. QueryPerformanceCounter(&t1);
  38. Sleep(1000);
  39. QueryPerformanceCounter(&t2);
  40. printf("Begin Time: %u/n", t1.QuadPart);
  41. printf("End Time: %u/n", t2.QuadPart);
  42. printf("Lasting Time: %u/n",( t2.QuadPart- t1.QuadPart));
  43. // 这里要计算时间(单位为秒),应加上这一句
  44. double dTotalTime = (double)(t2.QuadPart-t1.QuadPart) / (double)tc.QuadPart;    //秒
  45. printf("耗时: %f/n", dTotalTime);
  46. }

//以上三个示例程序都是测试1秒钟休眠所耗费的时间 
file://测/试环境:Celeron 800MHz / 256M SDRAM 
// Windows 2000 Professional SP2 
// Microsoft Visual C++ 6.0 SP5 
////////////////////////////////////////////////

以下是Timer1的运行结果,使用的是高精度的RDTSC指令 
Lasting Time: 804586872

以下是Timer2的运行结果,使用的是最粗糙的timeGetTime API 
Begin Time: 20254254 
End Time: 20255255 
Lasting Time: 1001

以下是Timer3的运行结果,使用的是QueryPerformanceCount API 
Frequency: 3579545 
Begin Time: 3804729124 
End Time: 3808298836 
Lasting Time: 3569712

古人说,触类旁通。从一本介绍图形编程的书上得到一个如此有用的实时处理知识,我感到非常高兴。有美不敢自专,希望大家和我一样喜欢这个轻便有效的计时器。

网上有一种说法说

double dTotalTime=(double)(t2.QuadPart-t1.QuadPart)/(double)tc.QuadPart

可能有问题,比如说现在很多主板都有CPU频率自动调整功能,主要是节能,尤其在笔记本上,这样除下来不能保证精确性。我不确定这种说法是否准确,供大家研究

上文主要摘自《使用CPU时间戳进行高精度计时》,其实除了上面提到的三种方法,还有一种常用当然没有上面准确的办法,就是使用GetTickCount函数,这种方法能够获取毫秒级的时间,具体用法如下:

  1. DWORD startTime = GetTickCount();
  2. // do something
  3. DWORD totalTime = GetTickCount() - startTime;

参考文献:

《使用CPU时间戳进行高精度计时》     作者:zhangyan_qd

《Windows图形编程》,(美)Feng Yuan 著

《VC中取得毫秒级的时间》,http://www.cppblog.com/humanchao/archive/2008/04/22/43322.html

VC获取精确时间的做法的更多相关文章

  1. vc 获取当前时间 (zhuan)

    vc 获取当前时间(2010-02-10 11:34:32) http://wenku.baidu.com/view/6ade96d049649b6648d7475e.html 1.使用CTime类 ...

  2. VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法

    1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...

  3. 【VS开发】VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法

    1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...

  4. linux 下的clock_gettime() 获取精确时间函数

    #include <time.h> int clock_gettime(clockid_t clk_id, struct timespec* tp); clock_gettime() 函数 ...

  5. 浅析libuv源码-获取精确时间

    在Timer模块中有提到,libuv控制着延迟事件的触发,那么必须想办法精确控制时间. 如果是JS,获取当前时间可以直接通过Date.now()得到一个时间戳,然后将两段时间戳相减得到时间差.一般情况 ...

  6. vc 获取当前时间

    1.使用CTime类 CString str; //获取系统时间 CTime tm; tm=CTime:: GetCurrentTime_r(); str=tm.Format("现在时间是% ...

  7. vc 获取网络时间

    方式1 : #include <WinSock2.h> #include <Windows.h> #pragma comment(lib, "WS2_32" ...

  8. Android平台之不预览获取照相机预览数据帧及精确时间截

    在android平台上要获取预览数据帧是一件极其容易的事儿,但要获取每帧数据对应的时间截并不那么容易,网络上关于这方面的资料也比较少.之所以要获取时间截,是因为某些情况下需要加入精确时间轴才能解决问题 ...

  9. PHP——获取当前时间精确到毫秒(yyyyMMddHHmmssSSS)

    前言 emmmmmm,别说话,我们偷偷偷狗子 格式 | yyyyMMddHHmmssSSS 代码 获取毫秒 //获取当前时间毫秒 function msectime() { list($msec, $ ...

随机推荐

  1. javascript中this指针的认识

    javascript中上下文环境就是this指针,即被调用函数所处的环境.这个上下文环境在大多数情况下指的是函数运行时封装这个函数的那个对象:当不通过任何对象单独调用一个函数时,上下文环境指的就是全局 ...

  2. C++类的常成员函数

    让一个成员函数带上常量性是什么意思呢?通常的答案是,一个常成员函数不会更改其class对象.这是一种平凡的表述,而编译器实现的手法也相当平凡. 任何非静态成员函数其实都被编译器隐式插入了一个指针类型的 ...

  3. nginx install lua module

    #install luajit #http://luajit.org/download.html .tar.gz cd LuaJIT- make install PREFIX=/home/allen. ...

  4. Eclipse+EGit的配置注意点, 以及解决Github多个本地仓库之间的冲突

    问题描述 不同本地仓库(e.g. Repo1, Repo2)之间同时修改一个文件时, 出现文件无法merge的情况. 具体表现为, 冲突(红色双向实心箭头)一直存在, 点pull没反应, 点push报 ...

  5. Android SDK与API版本的对应关系

    看教程.开发Android程序等很多地方,需要设置Android SDK的版本,而其要我们写的却是API版本的数字, 为了方便查看 Android SDK与API版本的对应关系 我在SDK Manag ...

  6. CDialogSK - A Skinnable Dialog Class

    Introduction This class is derived from the MFC CDialog. It supports the following features :- If ru ...

  7. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

  8. [转]maven入门

    http://wentao365.iteye.com/blog/903396 Maven是一个采用纯Java编写的开 源项目管理工具.Maven采用了一种被称之为project object mode ...

  9. 一步一步学数据结构之1--n(通用树)

    今天来看大家介绍树,树是一种非线性的数据结构,树是由n个结点组成的有限集合,如果n=0,称为空树:如果n>0,则:有一个特定的称之为根的结点,它只有直接后继,但没有直接前驱:除根以外的其他结点划 ...

  10. Android面试题06

    51. 一条最长的短信息约占多少byte? 中文70(包括标点),英文160,160个字节 这个说法不准确, 要跟手机制式运营商等信息有关. 做实验,看源码 ArrayList<String&g ...