//昨天把一个i写成1了 然后挂了一下午

首先进行质因数分解g=a1^b1+a2^b2...... l=a1^b1'+a2^b2'.......,然后判断两种不可行情况:1,g的分解式中有l的分解式中没有的质因子 2,存在bi>bi',然后剩下的都是可行解,对于每一个质因子三个数中有两个分别bi,bi',第三个的取值可为[bi,bi'],所以对于每一个质因子共有6(bi-bi')种取法(A(2,3)*(b-a+1)+C(2,3)*2分别为取得值在和不在边界上的情况,特殊:如果bi=bi'就只有一种取法),然后分步乘法乘起来就好。

其实也可以用容斥原理:(bi'-bi+1)^3-2*(bi'-bi)^3+(bi'-bi-1)^3,那个数随便选,减去在上边界减去在下边界,然后减多了,在加上既在上边界又在下边界的。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#include<string> using namespace std; long long T;
long long g,l;
long long f[][]; void solve(){
memset(f,,sizeof(f));
scanf("%I64d%I64d",&g,&l);
long long now_num=;
long long t=;
while (l!=){
while (l%now_num==){
if (f[t][]!=now_num){
f[++t][]=now_num;
}
f[t][]++;
l=l/now_num;
}
now_num++;
}
for (long long i=;i<=t;i++){
while (g%f[i][]==){
f[i][]++;
g=g/f[i][];
}
}
if (g!=){
printf("0\n");
return;
}
long long ans=;
for (long long i=;i<=t;i++){
if (f[i][]<f[i][]){
printf("0\n");
return;
}
if (f[i][]!=f[i][]){
long long tmp=(f[i][]-f[i][]+)*(f[i][]-f[i][]+)*(f[i][]-f[i][]+);
tmp=tmp-(*(f[i][]-f[i][])*(f[i][]-f[i][])*(f[i][]-f[i][]));
tmp=tmp+(f[i][]-f[i][]-)*(f[i][]-f[i][]-)*(f[i][]-f[i][]-);
ans=ans*tmp;
}
}
printf("%I64d\n",ans);
} int main(){
scanf("%I64d",&T);
for (long long cas=;cas<=T;cas++){
solve();
}
return ;
}
/*
1
15 5160 3
6 6
6 72
7 33 3
15 5160
9424 375981972
998 810
*/

hdu 4497 GCD and LCM 质因素分解+排列组合or容斥原理的更多相关文章

  1. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  2. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  3. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. HDU 4497 GCD and LCM 素因子分解+ gcd 和 lcm

    题意: 给两个数,lll 和 ggg,为x , y , z,的最小公倍数和最大公约数,求出x , y , z 的值有多少种可能性 思路: 将x , y , z进行素因子分解 素因子的幂次 x a1 a ...

  8. HDU 4497 GCD and LCM (分解质因数)

    链接 :  http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...

  9. HDU 4497 GCD and LCM (数学,质数分解)

    题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对. 析:数学题,当时就想错了,就没找出规律,思路是这样的. 首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n ...

随机推荐

  1. Swift是一个提供RESTful HTTP接口的对象存储系统

    Swift是一个提供RESTful HTTP接口的对象存储系统,最初起源于Rackspace的Cloud Files,目的是为了提供一个和AWS S3竞争的服务. Swift于2010年开源,是Ope ...

  2. B-树、B+树、B*树的区别

      原文地址:  http://blog.csdn.net/dazhong159/article/details/7963846/ B-树.B+树.B*树的区别 2012-09-11 22:41 97 ...

  3. 一个C#多线程的工作队列

    多线程添加元素到队列中,队列根据绑定 的事件进行自动处理,可以设置WorkSequential属性来实现对队列处理的单线程(严格顺序处理)或者多线程处理(循序出队,但是 多线程处理,不保证对队列元素的 ...

  4. cf475B Strongly Connected City

    B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  5. JS代码混淆 支持PHP .NET PERL

    官方  http://dean.edwards.name/packer/ Also available as .NET, perl and PHP applications. .NET实例下载地址:h ...

  6. code 代码分析 及其解决方案

    官网地址:http://msdn.microsoft.com/zh-cn/library/ms182135.aspx [FxCop.设计规则]11. 不应该使用默认参数 参考地址:http://blo ...

  7. UESTC_酱神赏花 2015 UESTC Training for Dynamic Programming<Problem C>

    C - 酱神赏花 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 262143/262143KB (Java/Others) Submi ...

  8. XMind快捷键可以自定义吗

    在使用快捷键的时候,不知你是否有过这样的疑问,为什么这个操作的快捷键一定要是这个呢,我为什么不能换成其他的按键呢.其实这些在XMind思维导图中都是可以更改的,用户可以根据自己的操作习惯来定义快捷键命 ...

  9. Exploring TCP state machine by graphs

    States TCP includes 11 states, they are: LISTEN SYN_SENT SYN_RECV ESTABLISHED FIN_WAIT1 CLOSE_WAIT F ...

  10. 苹果试图做?XCode6 放弃prefix.pch档

    当我们升级到XCode6后, 新建project发现默认是没有pch文件的.非常多人開始不习惯了,苹果到底为什么要取消这一个pch文件. 苹果觉得,因为组件单一模块的原因.你不应该在你的prefix代 ...