hive优化要点总结
个人认为总体两种思想:
1、让服务器尽可能的多做事情,榨干服务器资源,以最高系统吞吐量为目标
再好的硬件没有充分利用起来,都是白扯淡。
比如:
(1) 启动一次job尽可能的多做事情,一个job能完成的事情,不要两个job来做
通常来说前面的任务启动可以稍带一起做的事情就一起做了,以便后续的多个任务重用,与此紧密相连的是模型设计,好的模型特别重要.
(2) 合理设置reduce个数
reduce个数过少没有真正发挥hadoop并行计算的威力,但reduce个数过多,会造成大量小文件问题,数据量、资源情况只有自己最清楚,找到个折衷点,
(3) 使用hive.exec.parallel参数控制在同一个sql中的不同的job是否可以同时运行,提高作业的并发
2、让服务器尽量少做事情,走最优的路径,以资源消耗最少为目标
比如:
(1) 注意join的使用
若其中有一个表很小使用map join,否则使用普通的reduce join,注意hive会将join前面的表数据装载内存,所以较小的一个表在较大的表之前,减少内存资源的消耗
(2)注意小文件的问题
在hive里有两种比较常见的处理办法
第一是使用Combinefileinputformat,将多个小文件打包作为一个整体的inputsplit,减少map任务数
set mapred.max.split.size=256000000;
set mapred.min.split.size.per.node=256000000
set Mapred.min.split.size.per.rack=256000000
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
第二是设置hive参数,将额外启动一个MR Job打包小文件
hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False
hive.merge.size.per.task = 256*1000*1000 合并文件的大小
(3)注意数据倾斜
在hive里比较常用的处理办法
第一通过hive.groupby.skewindata=true控制生成两个MR Job,第一个MR Job Map的输出结果随机分配到reduce做次预汇总,减少某些key值条数过多某些key条数过小造成的数据倾斜问题
第二通过hive.map.aggr = true(默认为true)在Map端做combiner,假如map各条数据基本上不一样, 聚合没什么意义,做combiner反而画蛇添足,hive里也考虑的比较周到通过参数hive.groupby.mapaggr.checkinterval = 100000 (默认)hive.map.aggr.hash.min.reduction=0.5(默认),预先取100000条数据聚合,如果聚合后的条数/100000>0.5,则不再聚合
(4)善用multi insert,union all
multi insert适合基于同一个源表按照不同逻辑不同粒度处理插入不同表的场景,做到只需要扫描源表一次,job个数不变,减少源表扫描次数
union all用好,可减少表的扫描次数,减少job的个数,通常预先按不同逻辑不同条件生成的查询union all后,再统一group by计算,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条
(5) 参数设置的调优
集群参数种类繁多,举个例子比如
可针对特定job设置特定参数,比如jvm重用,reduce copy线程数量设置(适合map较快,输出量较大)
如果任务数多且小,比如在一分钟之内完成,减少task数量以减少任务初始化的消耗。可以通过配置JVM重用选项减少task的消耗
hive优化要点总结的更多相关文章
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- Hive优化案例
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...
- 一起学Hive——总结常用的Hive优化技巧
今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- Mysql优化要点
优化MySQL Mysql优化要点 慢查询 Explain mysql慢查询 注意事项 SELECT语句务必指明字段名称 SELECT *增加很多不必要的消耗(cpu.io.内存.网络带宽):增加了使 ...
- 大数据开发实战:Hive优化实战3-大表join大表优化
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...
- 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...
- Hadoop生态圈-hive优化手段-作业和查询优化
Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
随机推荐
- CI框架深入篇(2)一些基础的我之不知道的标准格式
1,一些命名规则:类文件名必大写,其他配置文件,视图文件或着脚本都要小写,类文件名和类名要一致!! 2,类名要大写开头,若是多个单词,那就下划线不要驼封法: 3,变量名要小写全,多个单词下划线分割,后 ...
- Android Translate 动画跳跃和缓慢移动
1.动画跳跃:在动画结束的时候设置位置 Animation.AnimationListener listener = new Animation.AnimationListener() { @Over ...
- HTTP头信息解读
本文为多篇“HTTP请求头相关文章”及<HTTP权威指南>一书的阅读后个人汇总整理版,以便于理解. 通常HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.客户端向服务器发 ...
- [php基础]PHP Form表单验证:PHP form validator使用说明
在PHP网站开发建设中,用户注册.留言是必不可少的功能,用户提交的信息数据都是通过Form表单提交,为了保证数据的完整性.安全性,PHP Form表单验证是过滤数据的首要环节,PHP对表单提交数据的验 ...
- Php RSS
RSS 聚合最近非常流行,因此至少对 RSS 及其工作方式有所了解是一名 PHP 开发人员的迫切需要.本文介绍了 RSS 基础知识.RSS 众多用途中的一些用途.如何使用 PHP 从数据库创建 RSS ...
- php访问方法外变量
class Capture { private static $_CapSite = 222; function dd() { echo self::$_CapSite; } } $cc=new Ca ...
- securecrt简介
SecureCRT是最常用的终端仿真程序,简单的说就是Windows下登录UNIX或Liunx服务器主机的软件,本文主要介绍SecureCRT的使用方法和技巧 VanDyke CRT 和 VanDyk ...
- MySQL查询执行的基础
当希望MySQL能够以更高的性能运行查询时,最好的办法就是弄清楚MySQL是如何优化和执行查询的.一旦理解这一点,很多查询优化实际上就是遵循一些原则让优化器能够按照预想的合理的方式运行. 换句话说,是 ...
- bat 小工具
@echo ************************************************************************:start@echo offset /p ...
- (转)C#.NET使用TTS引擎实现文语转换
(转)C#.NET使用TTS引擎实现文语转换 本文讲述使用微软TTS5.1语音引擎(中文)实现文本阅读和音频输出为WAV完美解决方案. 网上很多文章说的是要安装SAPI.51 SDK,而这个东西有好几 ...