Description

Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 +  × i + j2 -  × j + i × j, you are to find the M-th smallest element in the matrix.

Input

The first line of input is the number of test case.
For each test case there is only one line contains two integers, N( ≤ N ≤ ,) and M( ≤ M ≤ N × N). There is a blank line before each test case.

Output

For each test case output the answer on a single line.

Sample Input


Sample Output

-

-
- - -

Source

 

 题目大意:题目意思很简单。这个题目乍一看,先打n为比较小例如8的表,会觉得很有规律,大小规律是从右上往左下依次增大,但是这个规律到n为5*10^4就不一定保持了。

           解题思路:有一个规律是看得见的,j不变i增大函数值也在增大。根据这个可以对这n列二分得到<x的值,同样所求的x也是可以二分慢慢靠近最后的结果,我处理得到最后的结果是个数为m+1的最小值,所以最后mid-1即为答案。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<math.h>
#include<stdlib.h>
using namespace std;
#define inf 1<<30
#define ll long long
#define N 50006
ll n,m;
ll cal(ll i,ll j){
return i*i+*i+j*j-*j+i*j;
}
bool solve(ll mid){
ll cnt=;
for(ll j=;j<=n;j++){
ll low=;
ll high=n+;
while(low<high){
ll tmp=(low+high)>>;//另外的写法
ll ans=cal(tmp,j);
if(ans>=mid){
high=tmp;
}
else{
low=tmp+;
}
}
cnt+=low-;//另外的写法
}
if(cnt>=m) return true;
return false;
}
int main()
{
int t;
scanf("%d",&t);
while(t--){ scanf("%I64d%I64d",&n,&m);
ll low=-1e12;
ll high=1e12; while(low<high){
ll mid=(low+high)>>;//另外的写法
if(solve(mid)){
high=mid;
}
else{
low=mid+;
}
}
printf("%I64d\n",low-);//另外的写法 }
return ;
}

另外的写法,试比较

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<math.h>
#include<stdlib.h>
using namespace std;
#define inf 1<<30
#define ll long long
#define N 50006
ll n,m;
ll cal(ll i,ll j){
return i*i+*i+j*j-*j+i*j;
}
bool solve(ll mid){
ll cnt=;
for(ll j=;j<=n;j++){
ll low=;
ll high=n+;
ll tmp=(low+high)>>;
while(low<high){
ll ans=cal(tmp,j);
if(ans>=mid){
high=tmp;
}
else{
low=tmp+;
}
tmp=(low+high)>>;
}
cnt+=tmp-;
}
if(cnt>=m) return true;
return false;
}
int main()
{
int t;
scanf("%d",&t);
while(t--){ scanf("%I64d%I64d",&n,&m);
ll low=-1e12;
ll high=1e12;
ll mid=(low+high)>>;
while(low<high){
if(solve(mid)){
high=mid;
}
else{
low=mid+;
}
mid=(low+high)>>;
}
printf("%I64d\n",mid-); }
return ;
}

poj 3685 Matrix(二分搜索之查找第k大的值)的更多相关文章

  1. poj 3579 Median (二分搜索之查找第k大的值)

    Description Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numb ...

  2. 查找第K大的值

    这种题一般是给定N个数,然后N个数之间通过某种计算得到了新的数列,求这新的数列的第K大的值 POJ3579 题意: 用$N$个数的序列$x[i]$,生成一个新序列$b$. 新的序列定义为:对于任意的$ ...

  3. POJ 3579 3685(二分-查找第k大的值)

    POJ 3579 题意 双重二分搜索:对列数X计算∣Xi – Xj∣组成新数列的中位数 思路 对X排序后,与X_i的差大于mid(也就是某个数大于X_i + mid)的那些数的个数如果小于N / 2的 ...

  4. POJ_3685_Matrix_(二分,查找第k大的值)

    描述 http://poj.org/problem?id=3685 一个n*n的矩阵,(i,j)的值为i*i+100000*i+j*j-100000*j+i*j,求第m小的值. Matrix Time ...

  5. poj 2579 中位数问题 查找第K大的值

    题意:对列数X计算∣Xi – Xj∣组成新数列的中位数. 思路:双重二分搜索 对x排序 如果某数大于 mid+xi 说明在mid后面,这些数的个数小于 n/2 的话说明这个中位数 mid 太大 反之太 ...

  6. POJ_3579_Median_(二分,查找第k大的值)

    描述 http://poj.org/problem?id=3579 给你一串数,共C(n,2)个差值(绝对值),求差值从大到小排序的中值,偶数向下取. Median Time Limit: 1000M ...

  7. 基于快速排序思想partition查找第K大的数或者第K小的数。

    快速排序 下面是之前实现过的快速排序的代码. function quickSort(a,left,right){ if(left==right)return; let key=partition(a, ...

  8. 如何用快排思想在O(n)内查找第K大元素--极客时间王争《数据结构和算法之美》

    前言 半年前在极客时间订阅了王争的<数据结构和算法之美>,现在决定认真去看看.看到如何用快排思想在O(n)内查找第K大元素这一章节时发现王争对归并和快排的理解非常透彻,讲得也非常好,所以想 ...

  9. 利用划分树求解整数区间内第K大的值

    如何快速求出(在log2n的时间复杂度内)整数区间[x,y]中第k大的值(x<=k<=y)? 其实我刚开始想的是用快排来查找,但是其实这样是不行的,因为会破坏原序列,就算另外一个数组来存储 ...

随机推荐

  1. NetAnalyzer笔记 之 七 NetAnalyzer2016使用方法(1)

    [创建时间:2016-04-17 14:47:00] NetAnalyzer下载地址 距离新本的NetAnalyzer已经发布一段时间了,因为比较忙期间只出了一个视频教程,一直没有来的急写文档,今天就 ...

  2. Leetcode:linked_list_cycle

    一.     题目 给定一个链表.确定它是否有一个环.不使用额外的空间? 二.     分析 1. 空链表不成环 2. 一个节点自环 3. 一条链表完整成环 思路:使用两个指针,一个每次往前走2步,一 ...

  3. TBB入门

    获取TBB TBB的官方网站在http://threadingbuildingblocks.org/,可以在它的Downloads页面里找到Commercial Aligned Release,最新版 ...

  4. JavaScripts学习日记——BOM

    IE 3.0 和 Netscape Navigator 3.0 提供了一种特性 - BOM(浏览器对象模型),可以对浏览器窗口进行访问和操作.使用 BOM,开发者可以移动窗口.改变状态栏中的文本以及执 ...

  5. (转)数据库 distinct 和 group by 的区别

    这两者本质上应该没有可比性,distinct 取出唯一列,group by 是分组,但有时候在优化的时候,在没有聚合函数的时候,他们查出来的结果也一样. 举例来说可能方便一点. A表 id num a ...

  6. Android SQLite API的使用(非原创)

    1.使用SQLite的API来进行数据库的添加.删除.修改.查询 package com.example.sqlitedatabase.test; import android.content.Con ...

  7. iOS在MRC工程环境下下使用ARC的方法

  8. Web C# 导出Excel 方法总结

    方法1:微软推荐服务器需安装Excel型 依赖: 软件:Office Excel 2007-2013 引用:Microsoft Office 14.0 Object Library 1.1 数据准备 ...

  9. 改变HTML中超链接的显示样式

    更详细的内容请参考:http://www.w3school.com.cn/tags/tag_a.asp HTML中的代码如下: <a class="news_title" t ...

  10. win7 去除桌面快捷方式小箭头

    二手入了个 sony 的本子 vgn-sz780 拿手上,感觉真心不错,然后装系统,装好xp后发现怎么折腾都没声音,由于我的硬盘是SSD的虽然有点小只有60G,但是速度还是蛮不多的,于是一横心就装了 ...