考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关的量只有t = dp(j) - F(i) * T(j) , 我们要最小化它. dp(j)->y, T(j)->x, 那么y = F(i) * x + t, 就是给一些点和一个斜率...然后最小化截距, 显然维护下凸包就可以了. 然后因为无比坑爹的出题人....时间可以为负数, 所以要用平衡树维护(假如时间为非负数用单调队列就行了)....或者cdq分治. O(N log N)平衡树维护大家都应该会...cdq分治就是对于[l, r), m=(l+r)/2, 处理[m, r)的dp值对[l, m)dp值的贡献(这道题是从后往前dp). 具体就是暴力建[m, r)的凸包, 然后[l, m)的按斜率排序, 依次询问. 预处理一下, 时间复杂度就是O(N log N)了, 空间复杂度是O(N).

-------------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
 
using namespace std;
 
typedef long long ll;
 
const int maxn = 300009;
 
int N, S, V[maxn], q[maxn], stk[maxn], T[maxn], F[maxn];
ll dp[maxn];
 
void Init() {
scanf("%d%d", &N, &S);
for(int i = 0; i < N; i++) {
scanf("%d%d", T + i, F + i);
q[i] = N - i - 1;
}
T[N] = F[N] = 0;
for(int i = N; i--; )
T[i] += T[i + 1], F[i] += F[i + 1];
}
 
bool chk(int a, int b, int c) {
int xl = T[b] - T[a], xr = T[c] - T[b];
ll yl = dp[b] - dp[a], yr = dp[c] - dp[b];
return ((xl < 0) ^ (xr < 0)) ? yl * xr <= yr * xl : yl * xr >= yr * xl;
}
 
bool Jud(int a, int b, int k) {
ll x = T[b] - T[a], y = dp[b] - dp[a];
return x < 0 ? y > x * k : y < x * k;
}
 
ll calc(int x, int y) {
return dp[y] + ll(F[x]) * (T[x] - T[y] + S);
}
 
// [l, r)
void cdq(int l, int r) {
if(l + 1 == r) return;
int m = (l + r) >> 1;
int ql = l, qr = m;
for(int i = l; i < r; i++)
q[i] < m ? V[ql++] = q[i] : V[qr++] = q[i];
for(int i = l; i < r; i++) q[i] = V[i];
cdq(m, r);
int h = 0, t = -1;
for(int i = m; i < r; i++) {
while(t > 0 && chk(stk[t - 1], stk[t], q[i])) t--;
stk[++t] = q[i];
}
for(int i = l; i < m; i++) {
while(h < t && Jud(stk[h], stk[h + 1], F[q[i]])) h++;
dp[q[i]] = min(dp[q[i]], calc(q[i], stk[h]));
}
cdq(l, m);
ql = l, qr = m;
for(int i = l; i < r; i++) if(ql >= m) {
V[i] = q[qr++];
} else if(qr >= r) {
V[i] = q[ql++];
} else
V[i] = T[q[ql]] < T[q[qr]] ? q[ql++] : q[qr++];
for(int i = l; i < r; i++) q[i] = V[i];
}
 
void Work() {
for(int i = 0; i < N; i++)
dp[i] = ll(F[i]) * (T[i] + S);
cdq(0, N);
printf("%lld\n", dp[0]);
}
 
int main() {
Init();
Work();
return 0;
}

-------------------------------------------------------------------------------------------------

2726: [SDOI2012]任务安排

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 660  Solved: 171
[Submit][Status][Discuss]

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

HINT

Source

BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )的更多相关文章

  1. bzoj 2726: [SDOI2012]任务安排【cdq+斜率优化】

    cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项 ...

  2. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  3. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  4. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

  5. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

  6. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  7. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  8. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  9. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

随机推荐

  1. Matlab lugui

    function [L,U,pv,qv] = lugui(A,pivotstrat) %LUGUI Gaussian elimination demonstration. % % LUGUI(A) s ...

  2. 用cssText属性批量操作样式

    给一个HTML元素设置css属性,如 var head= document.getElementById("head"); head.style.width = "200 ...

  3. mysql数据库的物理文件结构

    mysql两种常用存储引擎myisam和innodb myisam不支持事务:innodb支持事务,当前作为插件来安装 myisam的数据库的物理文件结构为: .frm文件:与表相关的元数据信息都存放 ...

  4. linode最新试用(购买)流程

    最新linode官网www.linode.com可以免费试用7天,但是需要你的身份认证 第一步:注册一个linode账号email填写国内的163.126.qq邮箱是不能认证的,这里可以填写gmail ...

  5. (五)认识Android中的Service

    一.使用Service 1.右击java文件夹,选择新建Service,然后重写其中的onStartCommand函数,只要执行了startService函数,onStartCommand便会被执行 ...

  6. log4net简单用法

    一.NuGet在Server,mvc中添加Common.Logging和common.Logging.Log4Net如下图 二.在Server层创建logger类 <?xml version=& ...

  7. 几个Python oj的网站

    http://www.rqnoj.cn/ http://www.pythontip.com/

  8. sql远程连接卡死解决方法

    快捷键Win+R   输入CMD 回车  输入 netsh winsock reset 然后重启电脑  问题解决OK

  9. hdu1004Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  10. 贝叶斯网络基础(Probabilistic Graphical Models)

    本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为 ...