题目链接

https://www.luogu.org/problem/P4381

题解

基环树直径的板子。但是dfs会爆栈...所以最后改成了bfs。还是一个很考验码力的板子。

首先基环树的直径显然有两种情况,在不进入环的情况下在一个子树内,这直接dp求就好了。第二种是一个子树中的链+环上一段+另外一个子树中的链。按这两种情况分类讨论即可。对于这种情况,可以在先求第一种情况的同时把子树中的以子树的根为起点的最长链求出来,然后拓扑排序找出环,处理出环上的前缀和,断环成链,在上面跑一下单调队列就可以求出第二种情况下的\(\max\)了。然后这道题里这些步骤最好都是用bfs实现,dfs可能会爆栈...各种细节也要注意好...复杂度是\(O(n)\)的。

#include <bits/stdc++.h>
using namespace std; namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc #ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
}
template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf[--cnt]);
} #define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ') } using namespace io; #define ll long long
const int N = 1000100; deque<int>q;
int n, b[N], tot, in[N];
int head[N], cnt = 1, vis[N * 2];
int Ctot, c[N], a[N * 2];
struct edge {
int to, nxt;
int v;
} e[N << 1];
ll ans = 0, now = 0, s[N * 2], f[N * 2], d[N]; void ins(int u, int v, int w) {
e[++cnt] = (edge) {v, head[u], w};
head[u] = cnt;
} void bfs(int S, int bl) {
c[S] = bl;
q.clear(); q.push_back(S);
while(!q.empty()) {
int u = q.front(); q.pop_front();
c[u] = bl;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!c[v]) q.push_back(v);
}
}
} void topsort() {
q.clear();
for(int i = 1; i <= n; ++i) {
if(in[i] == 1) q.push_back(i);
}
while(!q.empty()) {
int u = q.front(); q.pop_front();
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(in[v] > 1) {
d[c[u]] = max(d[c[u]], f[u] + f[v] + e[i].v);
f[v] = max(f[v], f[u] + e[i].v);
--in[v]; if(in[v] == 1) q.push_back(v);
}
}
}
} void dp(int S, int vc) {
int tot = 0, u = S;
a[++tot] = u;
while(1) {
bool flag = 0;
in[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(in[v] > 1) {a[++tot] = v; s[tot] = s[tot - 1] + e[i].v; u = v; flag = 1; break;}
}
if(!flag) break;
}
if(tot == 2) {
int val = 0;
for(int i = head[S]; i; i = e[i].nxt) {
int v = e[i].to;
if(v == a[2]) val = max(val, e[i].v);
}
d[vc] = max(d[vc], f[a[1]] + f[a[2]] + val);
return;
}
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(v == S) {a[++tot] = S; s[tot] = s[tot - 1] + e[i].v; break;}
}
for(int i = tot + 1; i <= (tot - 1) * 2; ++i) {
a[i] = a[i - tot + 1];
s[i] = s[i - 1] + s[i - tot + 1] - s[i - tot];
}
q.clear(); q.push_back(1);
ll sum = 0;
for(int i = 2; i <= (tot - 1) * 2; ++i) {
while(!q.empty() && i - q.front() + 1 > (tot - 1)) q.pop_front();
sum = max(sum, f[a[q.front()]] + f[a[i]] + s[i] - s[q.front()]);
while(!q.empty() && f[a[i]] - s[i] > f[a[q.back()]] - s[q.back()]) q.pop_back();
q.push_back(i);
}
d[vc] = max(d[vc], sum);
} int main() {
read(n);
for(int x, i = 1; i <= n; ++i) {
ll w; read(x); read(w);
ins(i, x, w), ins(x, i, w);
in[i]++; in[x]++;
}
for(int i = 1; i <= n; ++i) {
if(!c[i]) bfs(i, ++Ctot);
}
topsort();
for(int i = 1; i <= n; ++i) {
if(!vis[c[i]] && in[i] > 1) {
vis[c[i]] = 1;
dp(i, c[i]);
ans += d[c[i]];
}
}
outn(ans);
}

LGOJP4381 [IOI2008]Island的更多相关文章

  1. bzoj1791: [Ioi2008]Island 岛屿 单调队列优化dp

    1791: [Ioi2008]Island 岛屿 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1826  Solved: 405[Submit][S ...

  2. IOI2008 island

    题目链接:[IOI2008]Island 题目大意:求基环树直径(由于题目的意思其实是类似于每个点只有一个出度,所以在每个联通块中点数和边数应该是相同的,这就是一棵基环树,所以题目给出的图就是一个基环 ...

  3. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  4. bzoj千题计划114:bzoj1791: [Ioi2008]Island 岛屿

    http://www.lydsy.com/JudgeOnline/problem.php?id=1791 就是求所有基环树的直径之和 加手工栈 #include<cstdio> #incl ...

  5. BZOJ1791: [Ioi2008]Island 岛屿

    BZOJ1791: [Ioi2008]Island 岛屿 Description 你将要游览一个有N个岛屿的公园. 从每一个岛i出发,只建造一座桥. 桥的长度以Li表示. 公园内总共有N座桥. 尽管每 ...

  6. [题解] LuoguP4381 [IOI2008]Island

    LuoguP4381 [IOI2008]Island Description 一句话题意:给一个基环树森林,求每棵基环树的直径长度的和(基环树的直径定义与树类似,即基环树上一条最长的简单路径),节点总 ...

  7. [bzoj1791][ioi2008]Island 岛屿(基环树、树的直径)

    [bzoj1791][ioi2008]Island 岛屿(基环树.树的直径) bzoj luogu 题意可能会很绕 一句话:基环树的直径. 求直径: 对于环上每一个点记录其向它的子树最长路径为$dp_ ...

  8. bzoj 1791: [Ioi2008]Island 岛屿

    #include<iostream> #include<cstdio> #define M 1000009 using namespace std; *M],cnt,n,hea ...

  9. 【BZOJ 1791】 [Ioi2008]Island 岛屿

    Description 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样 ...

随机推荐

  1. Python Tkinter 窗口创建与布局

    做界面,首先需要创建一个窗口,Python Tkinter创建窗口很简单:(注意,Tkinter的包名因Python的版本不同存在差异,有两种:Tkinter和tkinter,读者若发现程序不能运行, ...

  2. TCP/IP学习笔记18--TCP--拥塞控制 (慢开始, 拥塞避免, 快重传和快恢复)

                                                            用最多的梦面对未来   -- 李嘉诚 在某段时间,若对网络资源的需求超过了该资源所能提供 ...

  3. 不同编程语言实现输出“HelloWorld!”

    对于大多数程序语言,第一个入门编程代码便是"Hello World!",下面分别使用不同的语言输出"Hello World!":1. java语言 public ...

  4. strings包 — 汇总

    转自:https://www.jb51.net/article/148388.htm strings 包中的函数和方法 // Count 计算字符串 sep 在 s 中的非重叠个数 // 如果 sep ...

  5. springmvc的注解配置

    springmvc大大减少了对xml的配置,减少了配置量,以及可以在一个controller类中进行多个请求配置 一.springmvc配置 context:component-scan 开启包扫描, ...

  6. gorm 处理时间戳

    问题 在使用 gorm 的过程中, 处理时间戳字段时遇到问题.写时间戳到数据库时无法写入. 通过查阅资料最终问题得以解决,特此总结 设置数据库的 dsn parseTime = "True& ...

  7. LOJ6300 博弈论与概率统计 组合、莫队

    传送门 如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\). 注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数.也就是说如果说在总的博弈过程中,Ali ...

  8. aspnetcore 容器化部属到阿里云全过程记录

    第一次写博客,作为一个全栈er,记录一下从阿里云到产品运维上线的全过程 一.阿里云上的设置 购买阿里云ECS后: 进控制台查看实例公网IP 在控制台.网络与安全->安全组,配置规则 点击进去可以 ...

  9. mysql 表关系 与 修改表结构

    目录 mysql 表关系 与 修改表结构 两张表关系 分析步骤 修改表结构 mysql 表关系 与 修改表结构 两张表关系 多对一 以员工和部门举例 多个员工对应一个部门 foreign key 永远 ...

  10. c#测量字体宽度

    Bitmap image_size = * count, f.Height);//初始化大小 Graphics size_g = Graphics.FromImage(image_size); Siz ...