题目链接

https://www.luogu.org/problem/P4381

题解

基环树直径的板子。但是dfs会爆栈...所以最后改成了bfs。还是一个很考验码力的板子。

首先基环树的直径显然有两种情况,在不进入环的情况下在一个子树内,这直接dp求就好了。第二种是一个子树中的链+环上一段+另外一个子树中的链。按这两种情况分类讨论即可。对于这种情况,可以在先求第一种情况的同时把子树中的以子树的根为起点的最长链求出来,然后拓扑排序找出环,处理出环上的前缀和,断环成链,在上面跑一下单调队列就可以求出第二种情况下的\(\max\)了。然后这道题里这些步骤最好都是用bfs实现,dfs可能会爆栈...各种细节也要注意好...复杂度是\(O(n)\)的。

#include <bits/stdc++.h>
using namespace std; namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc #ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
}
template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf[--cnt]);
} #define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ') } using namespace io; #define ll long long
const int N = 1000100; deque<int>q;
int n, b[N], tot, in[N];
int head[N], cnt = 1, vis[N * 2];
int Ctot, c[N], a[N * 2];
struct edge {
int to, nxt;
int v;
} e[N << 1];
ll ans = 0, now = 0, s[N * 2], f[N * 2], d[N]; void ins(int u, int v, int w) {
e[++cnt] = (edge) {v, head[u], w};
head[u] = cnt;
} void bfs(int S, int bl) {
c[S] = bl;
q.clear(); q.push_back(S);
while(!q.empty()) {
int u = q.front(); q.pop_front();
c[u] = bl;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!c[v]) q.push_back(v);
}
}
} void topsort() {
q.clear();
for(int i = 1; i <= n; ++i) {
if(in[i] == 1) q.push_back(i);
}
while(!q.empty()) {
int u = q.front(); q.pop_front();
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(in[v] > 1) {
d[c[u]] = max(d[c[u]], f[u] + f[v] + e[i].v);
f[v] = max(f[v], f[u] + e[i].v);
--in[v]; if(in[v] == 1) q.push_back(v);
}
}
}
} void dp(int S, int vc) {
int tot = 0, u = S;
a[++tot] = u;
while(1) {
bool flag = 0;
in[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(in[v] > 1) {a[++tot] = v; s[tot] = s[tot - 1] + e[i].v; u = v; flag = 1; break;}
}
if(!flag) break;
}
if(tot == 2) {
int val = 0;
for(int i = head[S]; i; i = e[i].nxt) {
int v = e[i].to;
if(v == a[2]) val = max(val, e[i].v);
}
d[vc] = max(d[vc], f[a[1]] + f[a[2]] + val);
return;
}
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(v == S) {a[++tot] = S; s[tot] = s[tot - 1] + e[i].v; break;}
}
for(int i = tot + 1; i <= (tot - 1) * 2; ++i) {
a[i] = a[i - tot + 1];
s[i] = s[i - 1] + s[i - tot + 1] - s[i - tot];
}
q.clear(); q.push_back(1);
ll sum = 0;
for(int i = 2; i <= (tot - 1) * 2; ++i) {
while(!q.empty() && i - q.front() + 1 > (tot - 1)) q.pop_front();
sum = max(sum, f[a[q.front()]] + f[a[i]] + s[i] - s[q.front()]);
while(!q.empty() && f[a[i]] - s[i] > f[a[q.back()]] - s[q.back()]) q.pop_back();
q.push_back(i);
}
d[vc] = max(d[vc], sum);
} int main() {
read(n);
for(int x, i = 1; i <= n; ++i) {
ll w; read(x); read(w);
ins(i, x, w), ins(x, i, w);
in[i]++; in[x]++;
}
for(int i = 1; i <= n; ++i) {
if(!c[i]) bfs(i, ++Ctot);
}
topsort();
for(int i = 1; i <= n; ++i) {
if(!vis[c[i]] && in[i] > 1) {
vis[c[i]] = 1;
dp(i, c[i]);
ans += d[c[i]];
}
}
outn(ans);
}

LGOJP4381 [IOI2008]Island的更多相关文章

  1. bzoj1791: [Ioi2008]Island 岛屿 单调队列优化dp

    1791: [Ioi2008]Island 岛屿 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1826  Solved: 405[Submit][S ...

  2. IOI2008 island

    题目链接:[IOI2008]Island 题目大意:求基环树直径(由于题目的意思其实是类似于每个点只有一个出度,所以在每个联通块中点数和边数应该是相同的,这就是一棵基环树,所以题目给出的图就是一个基环 ...

  3. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  4. bzoj千题计划114:bzoj1791: [Ioi2008]Island 岛屿

    http://www.lydsy.com/JudgeOnline/problem.php?id=1791 就是求所有基环树的直径之和 加手工栈 #include<cstdio> #incl ...

  5. BZOJ1791: [Ioi2008]Island 岛屿

    BZOJ1791: [Ioi2008]Island 岛屿 Description 你将要游览一个有N个岛屿的公园. 从每一个岛i出发,只建造一座桥. 桥的长度以Li表示. 公园内总共有N座桥. 尽管每 ...

  6. [题解] LuoguP4381 [IOI2008]Island

    LuoguP4381 [IOI2008]Island Description 一句话题意:给一个基环树森林,求每棵基环树的直径长度的和(基环树的直径定义与树类似,即基环树上一条最长的简单路径),节点总 ...

  7. [bzoj1791][ioi2008]Island 岛屿(基环树、树的直径)

    [bzoj1791][ioi2008]Island 岛屿(基环树.树的直径) bzoj luogu 题意可能会很绕 一句话:基环树的直径. 求直径: 对于环上每一个点记录其向它的子树最长路径为$dp_ ...

  8. bzoj 1791: [Ioi2008]Island 岛屿

    #include<iostream> #include<cstdio> #define M 1000009 using namespace std; *M],cnt,n,hea ...

  9. 【BZOJ 1791】 [Ioi2008]Island 岛屿

    Description 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样 ...

随机推荐

  1. ansible的基础使用(一)

    ansible基础使用(一) ansible的主要功能 A:为什么是ansible B:ansible的安装 C:ansible的相关文件 D:ansible的基本使用 ansible的简单操作 A: ...

  2. [转帖]Windows 7寿终正寝 为何Windows 10屡被吐槽它却无比经典?

    Windows 7寿终正寝 为何Windows 10屡被吐槽它却无比经典? https://www.cnbeta.com/articles/tech/908897.htm 是的,一代经典操作系统Win ...

  3. 【转帖】国产PCIe SSD主控芯片获得中国芯大奖 3500MB/s读取

    国产PCIe SSD主控芯片获得中国芯大奖 3500MB/s读取 https://www.cnbeta.com/articles/tech/906033.htm 国产主控 在日前的2019“中国芯”集 ...

  4. ContainsExtensions不分区大小写

    public static class ContainsExtensions { public static bool Contains(this string source, string valu ...

  5. Spring主要用到两种设计模式

    Spring主要用到两种设计模式 1.工厂模式 Spring容器就是实例化和管理全部Bean的工厂. 工厂模式可以将Java对象的调用者从被调用者的实现逻辑中分离出来. 调用者只关心被调用者必须满足的 ...

  6. C#特性的学习(一)

    1.预定定义特性之一:AttributeUsage AttributeUsage有三个属性: 第一个属性:ValidOn 规定特性可被放置的语言元素,默认是AttributeTargets.All.

  7. 哪个参数用来区分请求来自客户(手机)端还是服务器(PC)端?

    cookie 和 session 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session. Cookie通过在客户端记录信息确定用 ...

  8. 5.安装CentOS后,开机找不到Win10的启动选项解决办法

    现象:在Win10下安装了CentOS7双系统,开机后,居然发现找不到Win10启动选项,默认进入了CentOS系统. 解决办法: 方法一:笔者一般是用创建一个Win10启动盘,电脑重启进入启动盘后, ...

  9. python在linux中import cv2问题

    python中import cv2遇到的错误及安装方法标签 1 错误: ImportError: libXext.so.6: cannot open shared object file: No su ...

  10. Multipath 多路径配置说明

    查看主机或者存储交换机上的www号,在存储上将LUN映射给需要的主机 cat  /sys/class/fc_host/host*/port_name 0x2002d0431efb7f5d 6d 该ww ...