题目描述

题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字

数据范围:

对于%50的数据,size<=10^4

对于%75的数据,size<=10^5

对于%100的数据,size<=2*10^5

牛客网链接

思路

链接:https://www.nowcoder.com/questionTerminal/96bd6684e04a44eb80e6a68efc0ec6c5?f=discussion
来源:牛客网

思路分析:
看到这个题目,我们的第一反应是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成了一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)这个数字比较,因此这个算法的时间复杂度为O(n2)。
我们以数组{7,5,6,4}为例来分析统计逆序对的过程。每次扫描到一个数字的时候,我们不拿ta和后面的每一个数字作比较,否则时间复杂度就是O(n2),因此我们可以考虑先比较两个相邻的数字。

(a) 把长度为4的数组分解成两个长度为2的子数组;
(b) 把长度为2的数组分解成两个成都为1的子数组;
(c) 把长度为1的子数组 合并、排序并统计逆序对 ;
(d) 把长度为2的子数组合并、排序,并统计逆序对;
在上图(a)和(b)中,我们先把数组分解成两个长度为2的子数组,再把这两个子数组分别拆成两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7}、{5}中7大于5,因此(7,5)组成一个逆序对。同样在第二对长度为1的子数组{6}、{4}中也有逆序对(6,4)。由于我们已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组 排序 如上图(c)所示, 以免在以后的统计过程中再重复统计。
接下来我们统计两个长度为2的子数组子数组之间的逆序对。合并子数组并统计逆序对的过程如下图如下图所示。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中剩余数字的个数,如下图(a)和(c)所示。如果第一个数组的数字小于或等于第二个数组中的数字,则不构成逆序对,如图b所示。每一次比较的时候,我们都把较大的数字从后面往前复制到一个辅助数组中,确保 辅助数组(记为copy) 中的数字是递增排序的。在把较大的数字复制到辅助数组之后,把对应的指针向前移动一位,接下来进行下一轮比较。

过程:先把数组分割成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个过程实际上就是归并排序

js代码

function InversePairs(data)
{
// write code here
let len = data.length
if (len === 0) return 0
const copy = data.concat([])
let count = InversePairsHelp(data, copy, 0, len-1)
return count%1000000007
function InversePairsHelp(data, copy, start, end){
if (start === end) {
copy[start] = data[start]
return 0
}
let mid = Math.floor((end-start) / 2)
let left = InversePairsHelp(copy, data, start, start+mid)
let right = InversePairsHelp(copy, data, start+mid+1, end)
let i = start+mid
let j = end
let count = 0
let indexCopy = end
while(i >= start && j >= start+mid+1){
if (data[i] > data[j]) {
copy[indexCopy--] = data[i--]
count = count + j - start - mid
}else {
copy[indexCopy--] = data[j--]
}
}
for(;i>=start;i--)
copy[indexCopy--]=data[i]
for(;j>=start+mid+1;j--)
copy[indexCopy--]=data[j]
return left+right+count
}
}

用js刷剑指offer(数组中的逆序对)的更多相关文章

  1. [剑指OFFER] 数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数.     分析:利用归并排序的思想,分成2部分,每一部分按照从大到 ...

  2. 剑指Offer——数组中的逆序对

    题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%100 ...

  3. 用js刷剑指offer(数组中出现次数超过一半的数字)

    题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  4. 剑指Offer——数组中的逆序对(归并排序的应用)

    蛮力: 遍历数组,对每个元素都往前遍历所有元素,如果有发现比它小的元素,就count++. 最后返回count取模. 结果没问题,但超时哈哈哈,只能过50%.   归并法: 看讨论,知道了这道题的经典 ...

  5. 剑指 Offer——数组中的逆序对

    1. 题目 2. 解答 借助于归并排序的分治思想,在每次合并的时候统计逆序对.因为要合并的两个数组都是有序的,如果左半部分数组当前值大于右半部分数组当前值,那么左半部分数组当前值右边的数就都大于右半部 ...

  6. 剑指offer_数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P. 并将P对1000000007取模的结果输出. 即输出P%100 ...

  7. 剑指Offer-34.数组中的逆序对(C++/Java)

    题目: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%10000 ...

  8. 用java刷剑指offer(数组中只出现一次的数字)

    题目描述 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. 牛客网链接 思路 链接:https://www.nowcoder.com/questionTer ...

  9. 用js刷剑指offer(链表中倒数第k个结点)

    题目描述 输入一个链表,输出该链表中倒数第k个结点. 牛客网链接 思路 设置两个指针,p,q,先让p走k-1步,然后再一起走,直到p为最后一个 时,q即为倒数第k个节点 js代码 // 空间复杂度1 ...

随机推荐

  1. ServletRequest与HttpServletRequest

    ServletRequest 解析:代表来自客户端的请求.当Servlet容器接收到客户端的要求访问特定Servlet的请求时,容器先解析客户端的原始请求数据,把它包装成一个ServletReques ...

  2. 有些新电脑采用“UEFI”作为固件。由于UEFI不支持DOS,所以在UEFI环境下安装的WIN10等系统也就无法使用基于DOS的一键GHOST

    有些新电脑采用“UEFI”作为固件.由于UEFI不支持DOS,所以在UEFI环境下安装的WIN10等系统也就无法使用基于DOS的一键GHOST

  3. consul ACL 配置范例

    service "dashboard" { policy = "write" } service "dashboard-sidecar-proxy&q ...

  4. [转帖]为什么需要 Zookeeper

    为什么需要 Zookeeper 柳树 学习&思考&写作 | 公众号:柳树的絮叨叨 ​关注他 童话 . 沈万马 等 351 人赞同了该文章 很多中间件,比如Kafka.Hadoop.HB ...

  5. K8S从入门到放弃系列-(16)Kubernetes集群Prometheus-operator监控部署

    Prometheus Operator不同于Prometheus,Prometheus Operator是 CoreOS 开源的一套用于管理在 Kubernetes 集群上的 Prometheus 控 ...

  6. maven dependency中provided和compile的区别

    重点:这个项目打成war包时,scope=provided的jar包,不会出现在WEB-INFO/lib目录下,而scope=compile的jar包,会放到WEB-INFO/lib目录 scope= ...

  7. Python脚本-自动下载安装

    #coding=utf-8 import os import sys if os.getuid() == 0: pass else: print 'no' sys.exit(1) version = ...

  8. warning: LF will be replaced by CRLF in application.yml. The file will have its origina解决方法

    环境: windows提交时报错如图所示: 原因是存在符号转义问题 windows中的换行符为 CRLF, 而在linux下的换行符为LF,所以在执行add . 时出现提示,解决办法: git con ...

  9. yum安装k8s集群

    k8s的安装有多种方式,如yum安装,kubeadm安装,二进制安装等.本文是入门系列,只是为了快速了解k8s的原理和工作过程,对k8s有一个快速的了解,这里直接采用yum安装 的1.5.2为案例进行 ...

  10. lucene中Field简析

    http://blog.csdn.net/zhaoxiao2008/article/details/14180019 先看一段lucene3代码 Document doc = new Document ...