人工智能 - AI
CNCC 2016 | 人工智能60年浪潮 (原文链接)
Intelligence,智能是指生物一般性的精神能力,其三因素理论:
- 成分智力 Componential Intelligence:思维和对问题解决所依赖的心理过程,与受教育程度直接相关;
- 经验智力 Experiential Intelligence:与受教育程度并不直接相关;
- 情境智力 Contextual Intelligence:情商;
Artificial Intelligence - AI,人工智能是指由人工制造出来的系统所表现出来的智能,是对人的意识、思维的信息过程的模拟,用于发展人的智能的三个方面。
Alan Turing - 图灵
- 计算机科学之父,人工智能之父
- 由0和1组成的有限状态自动机演算
- 图灵奖:计算机领域的诺贝尔奖
AI三大派别
- 逻辑主义(符号主义)
- 符号推理与机器推理
- Simon - CMU
- 连接主义
- 神经元网络与机器学习
- Minsky Marvin - MIT,连接主义提出者
- 行为主义
- 控制、自适应与进化计算
- 维纳 - MIT
起源:1956 - 达特茅斯会议;
发展:
第一次浪潮(1956-1976)
- 符号主义盛行,功能主义占主流,演算推理证明、专家系统、知识工程迅速发展;
- 在统计方法中引入符号方法进行语义处理 -> 人机交互;
- 斯坦福大学、卡耐基大学(CMU);
AI初期预言(1958) - Simon与Newell
- 十年内战胜国际象棋冠军
- 十年内发现和证明有意义的数学理论
- 十年内能谱写优美的乐趣
- 十年内能实现大多数的心理学理论
第二次浪潮(1976-2006)
- 连接主义盛行,Deep Learning尚未突破;
- AI神经元网络方法、自组织网络、感知机(Perceptron),BP算法、误差反传网络(Back Propagation Net);
第三次浪潮(2006 - 至今)
- 连接主义盛行,基于互联网大数据的Deep Learning取得突破;
未来:
关于AI的思考,人的知识可以分成四类:
- We know what we know:可推理可统计;
- We know what we don't know:可推理不可统计,举一反三;
- We don't know what we know:不可推理可统计,模糊识别;
- We don't know what we don't know:不可推理不可统计,顿悟;
横向(Learning)是可统计与不可统计,机器学习;纵向(Deep)是可推理证明与不可推理证明,神经网络;
目前,AI在逻辑、语言文字、图形图像方面做的比较好,空间、音乐与肢体运作方面则马马虎虎,内省、人际以及自然探索方面完全还不行。人工智能-1.0是在可统计可推理部分取得一定成果,人工智能-2.0是在1.0基础上向不可统计不可推理的部分区域推进,其中,利用小样本学习、基于贝叶斯程序学习等的概率学习方法将是下一代AI-2.0的重要方向。
参考:
人工智能 - AI的更多相关文章
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 【转】人工智能(AI)资料大全
这里收集的是关于人工智能(AI)的教程.书籍.视频演讲和论文. 欢迎提供更多的信息. 在线教程 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程 人工智能入门 – 人工智能基础学习.Peter ...
- 人工智能--AI篇
AI背景 在当今互联网信息高速发展的大背景下,人工智能(AI)已经开始走进了千家万户,逐渐和我们的生活接轨,那具体什么是AI呢? 什么是人工智能(AI)? 人工智能:简单理解就是由人制造出来的,有一定 ...
- 解读 --- 基于微软企业商务应用平台 (Microsoft Dynamics 365) 之上的人工智能 (AI) 解决方案
9月25日微软今年一年一度的Ignite 2017在佛罗里达州奥兰多市还是如期开幕了.为啥这么说?因为9月初五级飓风厄玛(Hurricane Irma) 在佛罗里达州登陆,在当地造成了挺大的麻烦.在这 ...
- 人工智能AI芯片与Maker创意接轨(下)
继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...
- 人工智能AI芯片与Maker创意接轨 (中)
在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...
- 国家制定人工智能(AI)发展战略的决策根据
在今年两会上,李彦宏的提案有何道理?提案的依据是什么?这个问题必须说清楚,对社会公众有个交代. 回想过去,早在上世纪九十年代,用"电子网络"模拟人脑的想法已经出现.这样的" ...
- python实现人工智能Ai抠图功能
这篇文章主要介绍了python实现人工智能Ai抠图功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下 自己是个PS小白,没办法只能通过技术来证明自己. 话不多说, ...
- 【AI测试】也许这有你想知道的人工智能 (AI) 测试--第二篇
概述此为人工智能 (AI) 测试第二篇 第一篇主要介绍了 人工智能测试.测试什么.测试数据等.第二篇主要介绍测试用例和测试报告.之后的文章可能具体介绍如何开展各项测试,以及具体项目举例如何测试.测试用 ...
- arcpy地理处理工具案例教程-生成范围-自动画框-深度学习样本提取-人工智能-AI
arcpy地理处理工具案例教程-生成范围-自动画框-深度学习样本提取-人工智能-AI 商务合作,科技咨询,版权转让:向日葵,135-4855_4328,xiexiaokui#qq.com 目的:对面. ...
随机推荐
- 《深入理解Java虚拟机》垃圾收集器
说起垃圾收集(Garbage Collection,GC),大部分人都把这项技术当做Java语言的伴生产物.事实上,GC的历史远比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态 ...
- 链表&LRU
简介 链表就是链式存储数据的一种数据结构.双向链表每个数据存储都包含他的前后数据节点的位置信息(索引/指针). class DSChain<T> { //使用栈来进行废弃空间回收 priv ...
- Java针对数据库增删改查代码
package com.bank.abc; import java.beans.PropertyVetoException; import java.sql.Connection; import ja ...
- [大数据之Spark]——Transformations转换入门经典实例
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下S ...
- is_null, empty, isset, unset对比
is_null, empty, isset, unset 我们先来看看这4个函数的描述 isset 判断变量是否已存在(配置)unset 把变量删除(释放)掉empty 判断变量是否为空is_null ...
- WCF学习之旅—WCF第二个示例(六)
第五步,创建数据服务 在“解决方案资源管理器”中,使用鼠标左键选中“SCF.WcfService”项目,然后在菜单栏上,依次选择“项目”.“添加新项”. 在“添加新项”对话框中,选择“Web”节点,然 ...
- C#中日期记忆日期的格式化,日期格式化说明
参数format格式详细用法:格式字符 关联属性/说明 d ShortDatePattern D LongDatePattern f 完整日期和时间(长日期和短时间) F FullDateTimePa ...
- SSIS Data Flow优化
一,数据流设计优化 数据流有两个特性:流和在内存缓冲区中处理数据,根据数据流的这两个特性,对数据流进行优化. 1,流,同时对数据进行提取,转换和加载操作 流,就是在source提取数据时,转换组件处理 ...
- setValue:forUndefinedKey this class is not key value coding-compliant for the key
下午开发过程中遇到一个错误,结果被的真惨,从上午 11 点查错一直查到下午 2 点才找到错误的原因,真的郁闷的不行. 关于查错这么久,主要的原因是: 1. 自己对 IOS 开发还不熟悉2. 不知道 ...
- 前端学PHP之运算符
× 目录 [1]总括 [2]算术运算符 [3]赋值运算符[4]位运算符[5]比较运算符[6]错误控制[7]逻辑运算符[8]字符串连接[9]数组运算符 前面的话 运算符是可以通过给出的一或多个表达式来产 ...