AGC001


A BBQ Easy

贪心。

https://agc001.contest.atcoder.jp/submissions/7856034

B Mysterious Light

很nb这个题

不好做,设\(f(a,b)\)表示边长为\(a,b\),一个角为\(60\)度的平行四边形从\(120\)度的角平分线处出发能走的路程,转移是一个递归,复杂度证明类似\(\gcd\)。

https://agc001.contest.atcoder.jp/submissions/7856746

C Shorten Diameter

每条边新建一个虚点,从每个点(虚实兜星)出发搜不超过\(D\)层(枚举直径中点),能保证真正的直径不超过\(D\),最大的大小即是答案。

https://agc001.contest.atcoder.jp/submissions/7864577

D Arrays and Palindrome

翻题解\(\sqrt{}\)

先说结论,如果\(a\)中奇数不超过\(2\)个,就把它们安排到序列两端,然后输出\(a_1-1,a_2,a_3,\ldots,a_{n-1},a_n+1\)。(此时只有\(a_1\)和\(a_n\)可能是奇数)

可行性画一画就知道了,至于为什么只有这个对,考虑连的边至少要\(n-1\)条,如果一个序列尽量放偶数可以连出\(\lfloor\frac n2\rfloor\)

如果一边有超过\(2\)个奇数那就会少一些边,对\(n\)分奇偶讨论可以得到不可行。

https://agc001.contest.atcoder.jp/submissions/7871320

E BBQ Hard

很久以前写过的顺便写写= =

求一大堆组合数之和,可以化为对每对\(i,j\in[1,n]\)求\((-a_i,-b_i)\)到\((a_j,b_j)\)的方案数

因为对每一对都要做所以直接dp就好了。

https://agc001.contest.atcoder.jp/submissions/3466674

F Wide Swap

最小化\(A\)的字典序相当于最小化\(p_A\)的字典序。(反正对的,关于证明弃疗了

那么从\(p\)上看就是可以交换相邻两个差\(\ge K\)的数

如果有两个数\(i<j,|p_i-p_j|<K\)那么最后\(i\)肯定在\(j\)前面

可以用拓扑序解决,然而边数太多了

每个点\(i\)只要向右边第一个\(a_j>a_i,|a_i-a_j|<K\)的和\(a_j<a_i,|a_i-a_j|<K\)的\(j\)连边即可,可用数归证明后面的边一定会被这两个点连到。

https://agc001.contest.atcoder.jp/submissions/7908880

A*G#C001的更多相关文章

  1. 3D Lut 电影级调色算法 附完整C代码

    在前面的文章,我提到过VSCO Cam 的胶片滤镜算法实现是3d lut. 那么3d lut  到底是个什么东西呢? 或者说它是用来做什么的? 长话短说,3d lut(全称 : 3D Lookup t ...

  2. Storyboards Tutorial 03

    这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...

  3. 文件图标SVG

    ​<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...

  4. 通过ipv6访问 g o o g l e

    Google.Youtube.Facebook等均支持IPv6访问,IPv4网络的用户大部分都无法访问,比如Gmail,Google Docs等等各种相关服务.而该类网站大部分均已接入IPv6网络,因 ...

  5. [转]Linux下g++编译与使用静态库(.a)和动态库(.os) (+修正与解释)

    在windows环境下,我们通常在IDE如VS的工程中开发C++项目,对于生成和使用静态库(*.lib)与动态库(*.dll)可能都已经比较熟悉,但是,在linux环境下,则是另一套模式,对应的静态库 ...

  6. CentOS 6.6 升级GCC G++ (当前最新版本为v6.1.0) (完整)

    ---恢复内容开始--- CentOS 6.6 升级GCC G++ (当前最新GCC/G++版本为v6.1.0) 没有便捷方式, yum update....   yum install 或者 添加y ...

  7. Linux deepin 下sublimes配置g++ openGL

    参考 :http://blog.csdn.net/u010129448/article/details/47754623 ubuntu 下gnome只要将代码中deepin-terminal改为gno ...

  8. [翻译svg教程]svg 中的g元素

    svg 中的<g>元素用来组织svg元素.如果一组svg元素被g元素包裹了,你可以通过对g元素进行变换(transform),被g元素包裹的元素也将被变换,就好这些被svg包裹的元素是一个 ...

  9. 软件工程:黄金G点小游戏1.0

    我们要做的是黄金G点小游戏: N个同学(N通常大于10),每人写一个0~100之间的有理数 (不包括0或100),交给裁判,裁判算出所有数字的平均值,然后乘以0.618(所谓黄金分割常数),得到G值. ...

随机推荐

  1. Linux学习笔记之grep命令和使用正则表达式

    0x00 正则表达式概述 正则表达式是描述一些字符串的模式,是由一些元字符和字符组成的字符串,而这些元字符是一些表示特殊意义的字符,即被正则表达式引擎表达的字符表示与其本意不同的一些字符. 0x01  ...

  2. JAVA8的java.util.function包 @FunctionalInterface

    1 函数式接口java.util.function https://www.cnblogs.com/CobwebSong/p/9593313.html 2 JAVA8的java.util.functi ...

  3. mysql 5.7 修改root密码允许远程连接

    1.修改root密码(其他用户类似)  试过网上看的一些 在mysql数据库执行 update user set password='新密码'  where user='root' 执行说找不到字段, ...

  4. docker学习之路-build asp.net core 2.2产生 warning MSB3245: Could not resolve this reference.错误的解决办法

    在docker build的时候有时我们可以直接使用dotnet publish来发布,但是如果用docker构建镜像的时候却会出现下面的错误: 解决办法:https://stackoverflow. ...

  5. Git 管理版本/回退

    参考链接:https://www.liaoxuefeng.com/wiki/896043488029600/896954074659008 Git status命令可以让我们时刻掌握仓库当前的状态,比 ...

  6. 学习笔记之自然语言处理(Natural Language Processing)

    自然语言处理 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7 ...

  7. 聊聊webpack 4

    前言 hello,小伙伴们,本篇仓库出至于我的GitHub仓库 web-study ,如果你觉得对你有帮助的话欢迎star,你们的点赞是我持续更新的动力 web-study webpack 打包工具 ...

  8. QT之Qt之Q_PROPERTY宏理解

    在初学Qt的过程中,时不时地要通过F2快捷键来查看QT类的定义,发现类定义中有许多Q_PROPERTY的东西,比如最常用的QWidget的类定义: Qt中的Q_PROPERTY宏在Qt中是很常用的,那 ...

  9. CSRF攻击与防御(转)

    CSRF概念:CSRF跨站点请求伪造(Cross—Site Request Forgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解:        攻击者盗用了你的身份,以你的名义发送 ...

  10. windows mysql服务器

    安装完mysql服务器后,需要启动服务器, 才可提供数据库存储服务.windows上如何启动和关闭mysql服务器呢? 1. 启动 进入mysql的安装目录,如D:\Program Files\mys ...