前言

  HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

一、Hadoop生太圈

  通过Hadoop生态圈,可以看到HBase的身影,可见HBase在Hadoop的生态圈是扮演这一个重要的角色那就是  实时、分布式、高维数据 的数据存储;

二、HBase简介

  – HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、 实时读写的分布式数据库

  – 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理 HBase中的海量数据,利用Zookeeper作为其分布式协同服务

  – 主要用来存储非结构化和半结构化的松散数据(列存NoSQL数据库)

三、HBase数据模型

  以关系型数据的思维下会感觉,上面的表格是一个5列4行的数据表格,但是在HBase中这种理解是错误的,其实在HBase中上面的表格只是一行数据;

  Row Key:

    – 决定一行数据的唯一标识

    – RowKey是按照字典顺序排序的。

    – Row key最多只能存储64k的字节数据。

  Column Family列族(CF1、CF2、CF3) & qualifier列:

    – HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema) 定义的一部分预先给出。如create ‘test’, ‘course’;

    – 列名以列族作为前缀,每个“列族”都可以有多个列成员(column,每个列族中可以存放几千~上千万个列);如 CF1:q1, CF2:qw,

       新的列族成员(列)可以随后按需、动态加入,Family下面可以有多个Qualifier,所以可以简单的理解为,HBase中的列是二级列,

     也就是说Family是第一级列,Qualifier是第二级列。两个是父子关系。

    – 权限控制、存储以及调优都是在列族层面进行的;

    – HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。

    – 目前为止HBase的列族能能够很好处理最多不超过3个列族。

  Timestamp时间戳:

    – 在HBase每个cell存储单元对同一份数据有多个版本,根据唯一的时间 戳来区分每个版本之间的差异,不同版本的数据按照时间倒序排序,

     最新的数据版本排在最前面。

    – 时间戳的类型是64位整型。

    – 时间戳可以由HBase(在数据写入时自动)赋值,此时时间戳是精确到毫 秒的当前系统时间。

    – 时间戳也可以由客户显式赋值,如果应用程序要避免数据版本冲突, 就必须自己生成具有唯一性的时间戳。

  Cell单元格:

    – 由行和列的坐标交叉决定;

    – 单元格是有版本的(由时间戳来作为版本);

    – 单元格的内容是未解析的字节数组(Byte[]),cell中的数据是没有类型的,全部是字节码形式存贮。

     • 由{row key,column(=<family> +<qualifier>),version}唯一确定的单元。

 

例:下图为 HBase 中一张表

  • RowKey 为行的唯一标识,所有行按照 RowKey 的字典序进行排序;
  • 该表具有两个列族,分别是 personal 和 office;
  • 其中列族 personal 拥有 name、city、phone 三个列,列族 office 拥有 tel、addres 两个列。

Hbase 的表具有以下特点:

  1、容量大:一个表可以有数十亿行,上百万列;

  2、面向列:数据是按照列存储,每一列都单独存放,数据即索引,在查询时可以只访问指定列的数据,有效地降低了系统的 I/O 负担;

  3、稀疏性:空 (null) 列并不占用存储空间,表可以设计的非常稀疏 ;

  4、数据多版本:每个单元中的数据可以有多个版本,按照时间戳排序,新的数据在最上面;

  5、存储类型:所有数据的底层存储格式都是字节数组 (byte[])。

四、HBase体系架构

  

    Client

     • 包含访问HBase的接口并维护cache来加快对HBase的访问

    Zookeeper

     • 保证任何时候,集群中只有一个master

     • 存贮所有Region的寻址入口。

     • 实时监控Region server的上线和下线信息。并实时通知Master

     • 存储HBase的schema和table元数据

    Master

     • 为Region server分配region

     • 负责Region server的负载均衡

     • 发现失效的Region server并重新分配其上的region

     • 管理用户对table的增删改操作

    RegionServer

     • Region server维护region,处理对这些region的IO请求

     • Region server负责切分在运行过程中变得过大的region 

     HLog(WAL log):

      – HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey对象,HLogKey中记录了写入数据的归属信息,

         除了table和 region名字外,同时还包括sequence number和timestamp,timestamp是” 写入时间”,sequence number的起始值为0,

       或者是最近一次存入文件系 统中sequence number。

      – HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的 KeyValue

    Region

      – HBase自动把表水平划分成多个区域(region),每个region会保存一个表 里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,

       region不断增大,当增大到一个阀值的时候,region就会等分会 两个新的region(裂变);

      – 当table中的行不断增多,就会有越来越多的region。这样一张完整的表 被保存在多个Regionserver上。

    Memstore 与 storefile

      – 一个region由多个store组成,一个store对应一个CF(列族)

      – store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,

       hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile

      – 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),

       形成更大的storefile。

      – 当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。

      – 客户端检索数据,先在memstore找,找不到再找storefile

      – HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表 示不同的HRegion可以分布在不同的HRegion server上。

      – HRegion由一个或者多个Store组成,每个store保存一个columns family。

      – 每个Strore又由一个memStore和0至多个StoreFile组成。

       如图:StoreFile 以HFile格式保存在HDFS上。

    

             

五、Phoenix介绍

  Phoenix 是 HBase 的开源 SQL 中间层,它允许你使用标准 JDBC 的方式来操作 HBase 上的数据。在 Phoenix 之前,如果你要访问 HBase,只能调用它的 Java API,但相比于使用一行 SQL 就能实现数据查询,HBase 的 API 还是过于复杂。Phoenix 的理念是 we put sql SQL back in NOSQL,即你可以使用标准的 SQL 就能完成对 HBase 上数据的操作。同时这也意味着你可以通过集成 Spring Data JPA 或 Mybatis 等常用的持久层框架来操作 HBase。

其次 Phoenix 的性能表现也非常优异,Phoenix 查询引擎会将 SQL 查询转换为一个或多个 HBase Scan,通过并行执行来生成标准的 JDBC 结果集。它通过直接使用 HBase API 以及协处理器和自定义过滤器,可以为小型数据查询提供毫秒级的性能,为千万行数据的查询提供秒级的性能。同时 Phoenix 还拥有二级索引等 HBase 不具备的特性,因为以上的优点,所以 Phoenix 成为了 HBase 最优秀的 SQL 中间层。


-END-

Hbase(一)了解Hbase与Phoenix的更多相关文章

  1. HBase 实战(1)--HBase的数据导入方式

    前言: 作为Hadoop生态系统中重要的一员, HBase作为分布式列式存储, 在线实时处理的特性, 备受瞩目, 将来能在很多应用场景, 取代传统关系型数据库的江湖地位. 本篇博文重点讲解HBase的 ...

  2. 4 hbase表结构 + hbase集群架构及表存储机制

      本博文的主要内容有    .hbase读取数据过程 .HBase表结构 .附带PPT http://hbase.apache.org/ 读写的时候,就需要用hbase了,换句话说,就是读写的时候. ...

  3. HBase 2、HBase安装与初试牛刀

    官方帮助文档:http://hbase.apache.org/book.html  PDF:http://hbase.apache.org/apache_hbase_reference_guide.p ...

  4. HBase案例:HBase 在人工智能场景的使用

    近几年来,人工智能逐渐火热起来,特别是和大数据一起结合使用.人工智能的主要场景又包括图像能力.语音能力.自然语言处理能力和用户画像能力等等.这些场景我们都需要处理海量的数据,处理完的数据一般都需要存储 ...

  5. Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结

    转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...

  6. Hbase 学习(一) hbase配置文件同步

    最近在狂啃hadoop的书籍,这部<hbase:权威指南>就进入我的视野里面了,啃吧,因为是英文的书籍,有些个人理解不对的地方,欢迎各位拍砖. HDFS和Hbase配置同步 hbase的配 ...

  7. [转]HBase hbck——检察HBase集群的一致性

    Hbase提供了hbck命令来检查各种不一致问题.hbck的名字仿效了HDFS的fsck命令,后者是一个用于检查HDFS中不一致问题的工具.下面这段非常易懂的介绍出自于hbck的源程序. 检查数据在M ...

  8. 大数据技术之_11_HBase学习_01_HBase 简介+HBase 安装+HBase Shell 操作+HBase 数据结构+HBase 原理

    第1章 HBase 简介1.1 什么是 HBase1.2 HBase 特点1.3 HBase 架构1.3 HBase 中的角色1.3.1 HMaster1.3.2 RegionServer1.3.3 ...

  9. HBase伪分布式安装(HDFS)+ZooKeeper安装+HBase数据操作+HBase架构体系

    HBase1.2.2伪分布式安装(HDFS)+ZooKeeper-3.4.8安装配置+HBase表和数据操作+HBase的架构体系+单例安装,记录了在Ubuntu下对HBase1.2.2的实践操作,H ...

  10. 通过HBase Shell与HBase交互

    出处:http://www.taobaotest.com/blogs/1604 业务开发测试HBase之旅二:通过HBase Shell与HBase交互 yedu 发表于:2011-10-11 浏览: ...

随机推荐

  1. 一个类搞定SQL条件映射解析,实现轻量简单实用ORM功能

    个人觉得轻简级的ORM既要支持强类型编码,又要有执行效率,还要通俗易懂给开发者友好提示,结合Expression可轻松定制自己所需要功能. Orm成品开源项目地址https://github.com/ ...

  2. html页面的渲染And<script>位置的影响

    周末加班敲代码的时用到了<script>标签,突然想到了一个问题:别的自测项目里面<script>我把他放在了不同位置,这里应该会对代码的执行与渲染后影响吧?于是今天专门进行了 ...

  3. Git 版本及版本范围表示法

    很多 Git 命令都使用 revision(修订版本)作为参数.根据不同的命令,有时候 revision 参 数代表一个特定的提交,有时候代表某一个提交可以追踪到的所有的父提交(比如 git log) ...

  4. 2019 医渡云java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.医渡云等公司offer,岗位是Java后端开发,因为发展原因最终选择去了医渡云,入职一年时间了,也成为了面试官 ...

  5. JS树结构转list结构

    树转list /** * 树转list */ function treeToList(tree){ for(var i in tree){ var node = tree[i]; list = []; ...

  6. 2019-09-09 memcache

    什么是缓存呢???缓存就是存贮数据(使用频繁的数据)的临时地方缓存可以认为是数据的大池子 一.数据缓存这里所说的数据缓存是指数据库查询缓存,每次访问页面的时候,都会先检测相应的缓存数据是否存在,如果不 ...

  7. JS--插件: 树Tree 开发与实现

    日常在Web项目开发时,经常会碰到树形架构数据的显示,从数据库中获取数据,并且显示成树形.为了方便,我们可以写一个javascript的一个跨浏览器树控件,后续可以重复使用.本节分享一个自己开发的JS ...

  8. 【转载】C#中ArrayList使用RemoveRange移除一整段数据

    在C#的编程开发中,ArrayList集合是一个常用的非泛型类集合,如果需要移除ArrayList集合中指定索引位置开始的一整段元素对象,则可以使用ArrayList集合中的RemoveRange方法 ...

  9. XSS相关有效载荷及绕道的备忘录(下)| 文末有打包好的负载

    前言: 今天发布的是下半部分 进入正题 过滤的绕过和一些奇异的有效载荷 大小写绕过 <sCrIpt>alert(1)</ScRipt> 绕过标签黑名单 <script x ...

  10. Easypoi实现单模板生成多页wrod文档

        EasyPoi可以很方便的通过一个word模板,然后通过填充模板的方式生成我们想要的word文档.但是碰到了一个单模板生成多页数据的场景,比如一个订单详情信息模板,但是有很多订单,需要导入到一 ...